Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Temporal Convolutional Networks and BERT-Based Multi-Label Emotion Analysis for Financial Forecasting

Charalampos M. Liapis and Sotiris Kotsiantis    

Resumen

The use of deep learning in conjunction with models that extract emotion-related information from texts to predict financial time series is based on the assumption that what is said about a stock is correlated with the way that stock fluctuates. Given the above, in this work, a multivariate forecasting methodology incorporating temporal convolutional networks in combination with a BERT-based multi-label emotion classification procedure and correlation feature selection is proposed. The results from an extensive set of experiments, which included predictions of three different time frames and various multivariate ensemble schemes that capture 28 different types of emotion-relative information, are presented. It is shown that the proposed methodology exhibits universal predominance regarding aggregate performance over six different metrics, outperforming all the compared schemes, including a multitude of individual and ensemble methods, both in terms of aggregate average scores and Friedman rankings. Moreover, the results strongly indicate that the use of emotion-related features has beneficial effects on the derived forecasts.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Zhengyan Cui, Junjun Zhang, Giseop Noh and Hyun Jun Park    
Traffic prediction is a popular research topic in the field of Intelligent Transportation System (ITS), as it can allocate resources more reasonably, relieve traffic congestion, and improve road traffic efficiency. Graph neural networks are widely used i... ver más
Revista: Applied Sciences
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace
Felix Schmid and Jorge Leandro    
Inundation maps that show water depths that occur in the event of a flood are essential for protection. Especially information on timings is crucial. Creating a dynamic inundation map with depth data in temporal resolution is a major challenge and is not... ver más
Revista: Forecasting
Yuanmao Li, Guixiong Liu and Wei Deng    
This study presents a novel data-driven method for state-of-charge estimation in lithium-ion batteries. It integrates a temporal convolutional network with multi-verse optimization to enhance the accuracy of predicting the state of charge. The temporal c... ver más
Revista: Batteries
Xupeng Wang, Keyong Hu, Yongling Wu and Wei Zhou    
The escalation of climate change and the increasing frequency of extreme weather events have amplified the importance of precise and timely lightning prediction. This predictive capability is pivotal for the preservation of life, protection of property, ... ver más
Revista: Atmosphere