ARTÍCULO
TITULO

Analysis of carbon monoxide production in methanol steam reforming reactor for generating hydrogen

Raphael Menechini Neto    
Giane Gonçalves Lenzi    
João Lourenço Castagnari Willimann Pimenta    
Arielle Cristina Fornari    
Onélia Aparecida Andreo dos Santos    
Luiz Mario de Matos Jorge (Author)    

Resumen

Seeking renewable energy sources has been a very important aspect in the development of human society, with many authors regarding hydrogen as a rather promising energy source. There are several forms of obtaining hydrogen, including steam reforming of hydrocarbons, alcohols, and ethers. Some characteristics of methanol, such as processing at mild temperatures from 250 to 350oC under atmospheric pressure and production from biomass ? no competition for food production ? have distinguished it from other alcohols for steam reforming. The great disadvantage of this technology when applied in proton exchange membrane (PEM) fuel cells is that the process of methanol steam reforming involves not only hydrogen and carbon dioxide, but also the production of a small amount of carbon monoxide, which is sufficient to affect the functionality of the fuel cells. This work presents the characterization of the catalyst HiFUEL R120 and shows how water/methanol molar ratio in the feed stream of an integral methanol steam reforming reactor influenced the conversion and the hydrogen selectivity in relation to carbon monoxide. This made it possible to identify the best operational conditions for lowering carbon monoxide content in the reactor effluent, avoiding the use of a CO purification unit.

 Artículos similares

       
 
Yunxia Lu, Hao An, Chao Li and Changmin Liu    
The potential environmental impact and increased operational costs associated with the upgrading and renovation of sewage treatment plants are acknowledged. This study employs the upgrading and expansion project of a municipal sewage plant in Dongguan Ci... ver más
Revista: Water

 
Nazrul Azlan Abdul Samat, Norfifah Bachok and Norihan Md Arifin    
The present study aims to offer new numerical solutions and optimisation strategies for the fluid flow and heat transfer behaviour at a stagnation point through a nonlinear sheet that is expanding or contracting in water-based hybrid nanofluids. Most hyb... ver más
Revista: Computation

 
Carlo Boursier Niutta, Pierpaolo Padula, Andrea Tridello, Marco Boccaccio, Francesco Acerra and Davide S. Paolino    
This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the ... ver más
Revista: Applied Sciences

 
Z. Jason Hou, Nicholas D. Ward, Allison N. Myers-Pigg, Xinming Lin, Scott R. Waichler, Cora Wiese Moore, Matthew J. Norwood, Peter Regier and Steven B. Yabusaki    
The influence of coastal ecosystems on global greenhouse gas (GHG) budgets and their response to increasing inundation and salinization remains poorly constrained. In this study, we have integrated an uncertainty quantification (UQ) and ensemble machine ... ver más
Revista: Water

 
Gricelda Herrera-Franco, Lady Bravo-Montero, Jhon Caicedo-Potosí and Paúl Carrión-Mero    
The excessive use of energy from fossil fuels, which corresponds to population, industrialisation, and unsustainable economic growth, is the cause of carbon dioxide production and climate change. The Water?Energy?Food (WEF) nexus is an applicable concept... ver más
Revista: Water