Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

A Personalized Recommendation Algorithm Based on the User?s Implicit Feedback in E-Commerce

Bo Wang    
Feiyue Ye and Jialu Xu    

Resumen

A recommendation system can recommend items of interest to users. However, due to the scarcity of user rating data and the similarity of single ratings, the accuracy of traditional collaborative filtering algorithms (CF) is limited. Compared with user rating data, the user’s behavior log is easier to obtain and contains a large amount of implicit feedback information, such as the purchase behavior, comparison behavior, and sequences of items (item-sequences). In this paper, we proposed a personalized recommendation algorithm based on a user’s implicit feedback (BUIF). BUIF considers not only the user’s purchase behavior but also the user’s comparison behavior and item-sequences. We extracted the purchase behavior, comparison behavior, and item-sequences from the user’s behavior log; calculated the user’s similarity by purchase behavior and comparison behavior; and extended word-embedding to item-embedding to obtain the item’s similarity. Based on the above method, we built a secondary reordering model to generate the recommendation results for users. The results of the experiment on the JData dataset show that our algorithm shows better improvement in regard to recommendation accuracy over other CF algorithms.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Jiafeng Li, Chenhao Li, Jihong Liu, Jing Zhang, Li Zhuo and Meng Wang    
With the explosive growth of mobile videos, helping users quickly and effectively find mobile videos of interest and further provide personalized recommendation services are the developing trends of mobile video applications. Mobile videos are characteri... ver más
Revista: Applied Sciences
Liang Xiao, Qibei Lu and Feipeng Guo    
A mobile personalized recommendation service satisfies the needs of users and stimulates them to continue to adopt mobile commerce applications. Therefore, how to precisely provide mobile personalized recommendation service is very important for the sust... ver más
Revista: Sustainability
(1) Pei Pei (National University Manila Philippines, and Anhui Sanlian University, China) (2) Rodolfo C. Raga Jr. (National University, Manila, Philippines) (3) Mideth Abisado (National University, Manila, Philippines)     Pág. 13 - 26
Personalized exercise question recommendation is a crucial aspect of smart education used to customize educational exercises and questions to individual students' distinct abilities and learning progress. Integrating cognitive diagnosis with deep learnin... ver más
Christos Troussas, Akrivi Krouska, Panagiota Tselenti, Dimitrios K. Kardaras and Stavroula Barbounaki    
The extensive pool of content within educational software platforms can often overwhelm learners, leaving them uncertain about what materials to engage with. In this context, recommender systems offer significant support by customizing the content delive... ver más
Revista: Information
Manolis Remountakis, Konstantinos Kotis, Babis Kourtzis and George E. Tsekouras    
Recommender systems have become indispensable tools in the hotel hospitality industry, enabling personalized and tailored experiences for guests. Recent advancements in large language models (LLMs), such as ChatGPT, and persuasive technologies have opene... ver más
Revista: Information