ARTÍCULO
TITULO

An experimental study of solar cooker performance with thermal concentrator system by spot Fresnel lens

Asrori Asrori    
Sudjito Suparman    
Slamet Wahyudi    
Denny Widhiyanuriyawan    

Resumen

The study to investigate the thermal performance of solar cooker using a spot Fresnel lens for concentrators of solar thermal energy is conducted.The main objectives of the present work are:a) to develop a new design of the cooking pot of solar cooker as an absorber of solar thermal from a spot Fresnel lens;b) to analyze the relationship of several temperature parameters in the cooking pot with the thermal efficiency of the Fresnel solar cooker (FSC);c) to conduct field test by heating test and cooling test to obtain a performance characteristic of FSC.The experimental test was conducted at Brawijaya University (7.9553°S, 112.6145°E), East Java, Indonesia during August ? September 2019. The Fresnel lens operation method uses the azimuth manual tracker to concentrate direct normal irradiance (DNI). The measurement of Direct Normal Irradiance (DNI) was made by the SM 206 Solar Power Meter and placed on the FSC frame. A new design of solar cooking pot has been developed. That is a cylindrical shape for boiling water and food cooking with a cone cavity as a solar collector. While on the cooking pot, the temperature sensor is placed:1) ambient temperature;2) cooking pot temperature;3) focal point temperature on the receiver surface;4) water temperature in the solar cooking pot.It is connected to the Digi-Sense 12 CH-Scanning Benchtop Thermometer for temperature data acquisition system. The measurement of wind speed was made by Cup Anemometer ABH-4224. The procedure for testing the FSC was developed based on existing international testing standards. The receiver/cooking pot was tested for thermal performance characteristics of cooking by conducting the following tests:1) no-load test;2) water heating and cooling tests.The experimental results show that the average stagnation temperature in a cooking pot with a conical cavity receiver was 267.35 °C. The receiver shape with a conical cavity has better heat transfer capability and low heat losses, hence, making it suitable for applications on FSC. DNI ±850 W/m² produces a focal point temperature of 1064 °C, a heat removal factor of 7.39 W/m². °C, and an optical efficiency factor of 0.312. Therefore, the thermal efficiency of the FSC is 27.72 %. The thermal efficiency tends to decrease until the end of the process due to the influence of the optical efficiency factor

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más