ARTÍCULO
TITULO

Impact of Effective Microorganisms on the Microbiological and Physicochemical Parameters of Produced Water

Herbert Okechukwu Stanley    
Ekoh Philip Efua    

Resumen

The study investigated the impact of effective microorganisms on the microbiological and physicochemical parameters of produced water. Produced water was obtained from Ebocha oil field within Rivers state. The spread plate method was used to determine the total heterotrophic bacterial counts, and pure isolates were subjected to biochemical characterization. Pure bacterial suspension of Lactobacillus plantarum, Aspergillus sp. and Penicillium italicum were obtained and subsequently inoculated into wastewater sample in consortium. Treated (with the consortium) wastewater sample was analyzed at interval for their physicochemical and microbiological parameters during the appropriate period of incubation (14 days) at room temperature. The bacterial load of produced water decreased from 1.3 x 108 cfu/ml to 3.6 x 107 cfu/ml, coliform counts increased from 2.0 x 105 cfu/ml to 1.4 x 106 cfu/ml, Staphylococcal counts decreased from 3.4 x 105 cfu/ml to 0 cfu/ml and Vibrio counts decreased from 8.0 x 105 cfu/ml to 2.0 x 105 cfu/ml. Biochemical characterization of bacterial isolates from the wastewater revealed the presence of Enterobacter sp, Bacillus sp, Klebsiella sp, Proteus sp, Escherichia coli and Staphylococcus sp. The pH and temperature ranges of water sample during the period of treatment varied. The BOD values decreased from 240 mg/L to 21 mg/L while the COD values decreased from 400 mg/L to 160 mg/L. The results of the heavy metal assessment revealed an appreciable reduction in the heavy metal concentrations of the sample. The concentration of zinc in produced water decreased from 0.113 mg/L to an undetectable level (< 0.01 mg/L), iron concentration decreased from 1.071 mg/L to 0.139 mg/L, Nickel decreased from 2.110 mg/L to 1.081 mg/L while copper and cadmium were undetected. The use of effective microorganisms in the treatment of produced water was effective in the reduction of microbial load, biochemical oxygen demand (BOD), chemical oxygen demand (COD) and removal of heavy metals.

 Artículos similares

       
 
Grazia Leonzio    
Due to the increase of carbon dioxide emissions, a target for their reduction has been defined in the Paris Agreement for 2030. This topic is extremely important, and urgent actions are required so that the attention of the scientific community is mainly... ver más
Revista: Applied Sciences

 
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura    
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ... ver más
Revista: Applied Sciences

 
Hamad Almaghrabi, Ben Soh and Alice Li    
Effective and efficient use of information and communication technology (ICT) systems in the administration of educational organisations is crucial to optimise their performance. Earlier research on the identification and analysis of ICT users? satisfact... ver más
Revista: Information

 
Kevin K. W. Ho and Shaoyu Ye    
The COVID-19 pandemic heightened concerns about health and safety, leading people to seek information to protect themselves from infection. Even before the pandemic, false health information was spreading on social media. We conducted a review of recent ... ver más
Revista: Information

 
Chen Xia, Christian Eduardo Verdonk Gallego, Adrián Fabio Bracero, Víctor Fernando Gómez Comendador and Rosa María Arnaldo Valdés    
This paper investigates the impact of trajectory predictor performance on the encounter probability generated by an adaptive conflict detection tool and examines the flexibility of the tool dependent on its adjustable thresholds, using historical radar t... ver más
Revista: Aerospace