ARTÍCULO
TITULO

Improving efficiency in determining the inductance for the active part of an electric machine's armature by methods of field modeling

Mykhailo Kotsur    
Dmytro Yarymbash    
Igor Kotsur    
Serhiy Yarymbash    

Resumen

Theoretical studies of electromagnetic processes in the active part of an electric machine's armature have been carried out in a dynamic short-circuit mode using a three-dimensional magnetic field model represented as a combination of electrical circuits of phase windings and a geometric 3D region. An approach was proposed to determine self- and mutual inductances between phases of the electric machine armature winding based on decomposition of electromagnetic processes by means of various combinations of powering the armature phase windings. Laws of electromagnetic processes resulting from self- and mutual effects of the armature phase currents causing appearance of effects of self- and mutual induction with and without taking into account magnetic properties of materials were established. The phenomena of self induction in phases of the armature winding, formation of components of induced currents in the phase as a result of action of currents in neighboring phases and their magnetizing and demagnetizing properties were considered. Influence of these processes leads to an asymmetry of the systems of mutual inductance between the winding phases. However, symmetry of total inductance of the armature phase windings is not violated. To determine with high accuracy inductive parameters of the electric machine armature winding according to the classical method, corresponding correction coefficients were proposed. This will minimize current errors and ensure adequacy of known widely used three- and two-phase models of electric machines based on systems of differential equations of the first order. Reliability and accuracy of the data obtained in 3D modeling of magnetic fields were confirmed by the results of physical tests. When taking into account magnetic properties of materials used in the active part of the electric machine armature, relative current errors did not exceed 2.68÷2.91 % and when magnetic properties were not taken in account, the errors measured 103.09÷106.32 %

 Artículos similares

       
 
Yixiao Li, Fang Zhang and Jinhui Jiang    
Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuo... ver más
Revista: Aerospace

 
Giacomo Borelli, Gabriella Gaias and Camilla Colombo    
In recent years, the interest in proximity operations to uncooperative and non-collaborative objects has been growing and and demanding for specific technology advances to tackle these challenging cases of in-orbit servicing and removal missions. Indeed,... ver más
Revista: Aerospace

 
Ha-Kyung Kim, In-Hwan Cho, Eun-A Hwang, Byung-Hun Han and Baik-Ho Kim    
This paper reviews the evolution and integration of diatom-based water quality assessments with environmental DNA (eDNA) techniques for advancing river ecosystem health evaluations. Traditional methods, relying on microscopy and diatom indices, have sign... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures