Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Comparison of Bias Correction Methods for Summertime Daily Rainfall in South Korea Using Quantile Mapping and Machine Learning Model

Ga-Yeong Seo and Joong-Bae Ahn    

Resumen

This study compares the bias correction techniques of empirical quantile mapping (QM) and the Long Short-Term Memory (LSTM) machine learning model for summertime daily rainfall simulation focusing on precipitation-dependent bias and temporal variation. Numerical experiments using Weather Research and Forecasting (WRF) were conducted over South Korea with lateral boundary conditions of ERA5 reanalysis data. For the spatial distribution of mean summertime rainfall, the bias-uncorrected WRF simulation (WRF_RAW) showed dry bias for most of the region of South Korea. The WRF results corrected by QM and LSTM (WRF_QM and WRF_LSTM, respectively) were improved for the mean summer rainfall simulation with the root mean square error values of 0.17 and 0.69, respectively, which were smaller than those of the WRF_RAW (1.10). Although the WRF_QM performed better than the WRF_LSTM in terms of the summertime mean and monthly precipitation, the WRF_LSTM presented a closer interannual rainfall variation to the observation than the WRF_QM. The coefficient of determination for calendar-day mean rainfall was the highest in the following order: the WRF_LSTM (0.451), WRF_QM (0.230), and WRF_RAW (0.201). However, the WRF_LSTM had a limitation in reproducing extreme rainfall exceeding 50 mm/day due to the few cases of extreme precipitation in training data. Nevertheless, the WRF_LSTM better simulated the observed light-to-moderate precipitation (10?50 mm/day) than the others.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
François Fouss and Elora Fernandes    
Providing fair and convenient comparisons between recommendation algorithms?where algorithms could focus on a traditional dimension (accuracy) and/or less traditional ones (e.g., novelty, diversity, serendipity, etc.)?is a key challenge in the recent dev... ver más
Revista: Information
Xin Jing, Xi Shao, Tung-Chang Liu and Bin Zhang    
In this study, we validated the consistency of the GRUAN RS92 and RS41 datasets, versions EDT.1 and GDP.2, in the upper troposphere and lower stratosphere (200?20 hPa), through dual launch campaigns at the GRUAN site and using the radio occultation (RO) ... ver más
Revista: Atmosphere
Jingbei Sun, Huimin Li, Wenming Lin and Yijun He    
Spaceborne synthetic aperture radar (SAR) has been proven to be a useful technique for observing the sea surface wind and current over the open ocean given its all-weather data-gathering capability and high spatial resolution. In addition to the commonly... ver más
Susen Shrestha, Mattia Zaramella, Mattia Callegari, Felix Greifeneder and Marco Borga    
This study aims to evaluate the potential of ERA5 precipitation and temperature reanalysis for snow water equivalent (SWE) simulation by considering the role of catchment spatial scale in controlling the errors obtained by comparison with corresponding S... ver más
Revista: Climate
Jae-Cheol Jang, Eun-Ha Sohn, Ki-Hong Park and Soobong Lee    
Evapotranspiration (ET) is a fundamental factor in energy and hydrologic cycles. Although highly precise in-situ ET monitoring is possible, such data are not always available due to the high spatiotemporal variability in ET. This study estimates daily po... ver más
Revista: Hydrology