Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees

Shaonan Zhu    
Xiangyuan Wang    
Donglai Jiao    
Yiding Zhang and Jiaxin Liu    

Resumen

Obtaining precise and detailed precipitation data is crucial for analyzing watershed hydrology, ensuring sustainable water resource management, and monitoring events such as floods and droughts. Due to the complex relationship between precipitation and geographic factors, this study divides the entire country of China into eight vegetation zones based on different vegetation types. Within each vegetation zone, we employ a seasonally adjusted Extreme Random Trees approach to spatially downscale GPM (Global Precipitation Measurement) satellite monthly precipitation data. To validate the effectiveness of this method, we compare it with kriging interpolation and traditional global downscaling methods. By increasing the spatial resolution of the GPM monthly precipitation dataset from 0.1° to 0.01°, we evaluate the downscaled results and validate them against ground-level rain gauge data and GPM satellite precipitation data. The results indicate that the partitioned area prediction method outperforms other approaches, resulting in a precipitation dataset that not only achieves high accuracy but also offers finer spatial resolution compared to the original GPM precipitation dataset. Overall, this approach enhances the model?s capability to capture complex spatial features and demonstrates excellent generalization. The resulting higher-resolution precipitation dataset enables the creation of more accurate precipitation distribution maps, providing data support for regions lacking hydrological information. These data can be used to analyze seasonal precipitation patterns and reveal differences in precipitation across different seasons and geographic regions.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Xuwen Li, Sheng Jiang, Xiangyuan Wang, Tiantian Wang, Su Zhang, Jinjin Guo and Donglai Jiao    
Carbon dioxide (CO2) is currently the most harmful greenhouse gas in the atmosphere. Obtaining long-term, high-resolution atmospheric column CO2 concentration (XCO2) datasets is of great practical significance for mitigating the greenhouse effect, identi... ver más
Revista: Atmosphere
Chengcheng Zhang, Wei Shan, Shuai Liu, Ying Guo and Lisha Qiu    
The high-resolution permafrost distribution maps have a closer relationship with engineering applications in cold regions because they are more relative to the real situation compared with the traditional permafrost zoning mapping. A particle swarm optim... ver más
Revista: Sustainability
Qianqian Chen, Wanqing Liu and Chang Huang    
As the largest inland saltwater lake in China, Qinghai Lake plays an important role in regional sustainable development and ecological environment protection. In this study, we adopted a spatial downscaling model for mapping lake water at 10 m resolution... ver más
Revista: Water
Xiaona Sun, Jingcheng Wang, Lunwu Zhang, Chenjia Ji, Wei Zhang and Wenkai Li    
High spatial resolution (1 km or finer) precipitation data fields are crucial for understanding the Earth?s water and energy cycles at the regional scale for applications. The spatial resolution of the Global Precipitation Measurement (GPM) mission (IMER... ver más
Revista: Atmosphere
Marino Marrocu and Luca Massidda    
Rainfall forecasting plays a key role in mitigating environmental risks in urban areas, which are subject to increasing hydrogeological risk due to transformations in the urban landscape. We present a new technique for probabilistic precipitation nowcast... ver más
Revista: Forecasting