Inicio  /  Aerospace  /  Vol: 10 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Thermal Protection Mechanism of a Novel Adjustable Non-Ablative Thermal Protection System for Hypersonic Vehicles

Bin Chang    
Jie Huang and Wei-Xing Yao    

Resumen

In order to improve the thermal protection performance of the active thermal protection system (TPS) based on the spike and jet, an adjustable non-ablative thermal protection system, of which the spike can be rotated in the direction of the free stream, is proposed in this paper. The thermal protection mechanism and the optimal installation angle are analyzed by adopting the numerical method. The results show that the angle of attack has great influence on the peak heat flux of hypersonic vehicles, the dangerous point is on the windward side of the vehicles at the non-zero angle of attack. With the increase in angle of attack, the heat flux of the windward side of the vehicles rises rapidly, leading to the decrease in the global thermal protection efficiency. The adjustable non-ablative TPS in this paper greatly reduces the aeroheating of the windward side through the installation angle between the spike and nose cone, thus improving the global thermal protection efficiency. The optimal installation angle can be obtained by numerical or experimental methods in engineering design, and the difference between the angle of attack and the optimal installation angle is about 2.4° for the proposed model. Therefore, the installation angle can be automatically adjusted based on the angle of attack to achieve the highest thermal protection efficiency.

 Artículos similares