Inicio  /  Aerospace  /  Vol: 6 Par: 9 (2019)  /  Artículo
ARTÍCULO
TITULO

Optimization Provenance of Whiplash Compensation for Flexible Space Robotics

Timothy Sands    

Resumen

Automatic controls refer to the application of control theory to regulate systems or processes without human intervention, and the notion is often usefully applied to space applications. A key part of controlling flexible space robotics is the control-structures interaction of a light, flexible structure whose first resonant modes lie within the bandwidth of the controller. In this instance, the designed-control excites the problematic resonances of the highly flexible structure. This manuscript reveals a novel compensator capable of minimum-time performance of an in-plane maneuver with zero residual vibration (ZV) and zero residual vibration-derivative (ZVD) at the end of the maneuver. The novel compensator has a whiplash nature of first commanding maneuver states in the opposite direction of the desired end state. For a flexible spacecraft simulator (FSS) free-floating planar robotic arm, this paper will first derive the model of the flexible system in detail from first principles. Hamilton?s principle is augmented with the adjoint equation to produce the Euler?Lagrange equation which is manipulated to prove equivalence with Newton?s law. Extensive efforts are expended modeling the free?free vibration equations of the flexible system, and this extensive modeling yields an unexpected control profile?a whiplash compensator. Equations of motion are derived using both the Euler?Lagrange method and Newton?s law as validation. Variables are then scaled for efficient computation. Next, general purposed pseudospectral optimization software is used to seek an optimal control, proceeding afterwards to validate optimality via six theoretical optimization necessary conditions: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal transversality condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution equation; and lastly (6) Bellman?s principle. The results are novel and unique in that they initially command full control in the opposite direction from the desired end state, while no such results are seen using classical control methods including classical methods augmented with structural filters typically employed for controlling highly flexible multi-body systems. The manuscript also opens an interesting question of what to declare when the six optimality necessary conditions are not necessarily in agreement (we choose here not to declare finding the optimal control, instead calling it suboptimal).

 Artículos similares

       
 
Yilin Qu, Xiao Xie, Shucheng Zhang, Cheng Xing, Yong Cao, Yonghui Cao, Guang Pan and Baowei Song    
The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide... ver más

 
Hamza Alkuime, Emad Kassem, Khaled A. Alshraiedeh, Manaf Bustanji, Ahmad Aleih and Fawzi Abukhamseh    
This study aims to develop a framework to incorporate Waste Cooking Oil (WCO) into asphalt mixtures. Such a framework utilizes a Balanced Mix Design (BMD) approach to ensure adequate resistance to cracking and rutting. Transportation agencies can use the... ver más
Revista: Applied Sciences

 
Stanislav Kirpichenko, Lev Utkin, Andrei Konstantinov and Vladimir Muliukha    
A method for estimating the conditional average treatment effect under the condition of censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed. The main idea behind the method is to apply the Beran estimator for e... ver más
Revista: Algorithms

 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace

 
Lakshmi Narayana Phaneendra Peri, Antonella Ingenito and Paolo Teofilatto    
The goal of this paper is to investigate the aerodynamic and aerothermodynamic behavior of the Schiaparelli capsule after the deployment of a supersonic disk-gap-band (DGB) parachute during its re-entry phase into the Martian atmosphere. The novelty of t... ver más
Revista: Aerospace