Inicio  /  Aerospace  /  Vol: 6 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

A Simple Model to Assess the Role of Dust Composition and Size on Deposition in Rotorcraft Engines

Nicholas Bojdo and Antonio Filippone    

Resumen

There have been several recorded mishaps of rotorcraft experiencing flame-out due to engine surge as a result of rapid accumulation of sand and dust on nozzle guide vanes. Minerals such as sodium chloride and albite have lower melting points than quartz and are found to constitute some of the loose sediment on unprepared landing sites in the Persian Gulf. Despite this, they are not found in great abundance, if at all, in many of the test dusts that are used to qualify engines operating in harsh environments. The consequence is an under-prediction of the time to failure due to vane deposit build-up. In the current work, we use a simple model to demonstrate the sensitivity of accumulation efficiency (the proportion of ingested dust that sticks) to mineral dust physico-chemical properties. We utilise the concept of thermal Stokes number to examine the relationship between time to equilibrate and residence time and how this varies as a function of constituent mineral, as well as particle size. The likelihood of impact increases with momentum Stokes number, while the likelihood of adhesion decreases with thermal Stokes number, yet the two both increase with the square of particle diameter. This leads to a peak in deposition rate at a certain particle size. However, dust mineralogy is shown to influence sticking efficiency more than impact efficiency owing to differences in melting point. Finally, we apply our simple model to estimate the mass of dust deposited during a single brownout landing of a Pave Hawk helicopter, using two different commercially-available test dusts.

 Artículos similares

       
 
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou    
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ... ver más
Revista: Applied Sciences

 
Tamir Shaqarin and Bernd R. Noack    
Limiting the suspension stroke in vehicles holds critical and conceivable benefits. It is crucial for the safety, stability, ride comfort, and overall performance of the vehicle. Furthermore, it improves the reliability of suspension components and maint... ver más
Revista: Applied Sciences

 
Tianhao Wang, Hongying Meng, Rui Qin, Fan Zhang and Asoke Kumar Nandi    
Wind turbines are a crucial part of renewable energy generation, and their reliable and efficient operation is paramount in ensuring clean energy availability. However, the bearings in wind turbines are subjected to high stress and loads, resulting in fa... ver más
Revista: Applied Sciences