Inicio  /  Aerospace  /  Vol: 11 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

A Multidisciplinary Optimization Framework for Ecodesign of Reusable Microsatellite Launchers

Girolamo Musso    
Iara Figueiras    
Héléna Goubel    
Afonso Gonçalves    
Ana Laura Costa    
Bruna Ferreira    
Lara Azeitona    
Simão Barata    
Alain Souza    
Frederico Afonso    
Inês Ribeiro and Fernando Lau    

Resumen

The commercial space launch sector is currently undergoing a significant shift, with increasing competition and demand for launch services, as well as growing concerns about the environmental impact of rocket launches. To address these challenges, within the New Space Portugal project scope, a multidisciplinary framework for designing and optimizing new launch vehicles is proposed. Creating a more resilient and responsible space industry can be achieved by combining technological innovation and environmental sustainability, as emphasized by the framework. The main scope of the framework was to couple all the disciplines relevant to the space vehicle design in a modular way. Significant emphasis was placed on the infusion of ecodesign principles, including Life Cycle Assessment (LCA) considerations. Optimization techniques were employed to enhance the design and help designers conduct trade-off studies. In general, this multidisciplinary framework aims to provide a comprehensive approach to designing next-generation launch vehicles that meet the demands of a rapidly changing market while also minimizing their environmental impact. A methodology that leverages the strengths of both genetic and gradient-based algorithms is employed for optimizations with the objectives of maximizing the apogee altitude and minimizing the Global Warming Potential (GWP). Despite only being tested at the moment for sounding rockets, the framework has demonstrated promising results. It has illuminated the potential of this approach, leading to the identification of three optimal designs: one for maximizing the apogee, another for minimizing GWP, and a compromise design that strikes a balance between the two objectives. The outcomes yielded a maximum apogee of 6.41 6.41 km, a minimum GWP of 9.06 9.06 kg CO2???? CO 2 e q , and a balanced compromise design featuring an apogee of 5.75 5.75 km and a GWP of 25.64 25.64 kg CO2???? CO 2 e q .

 Artículos similares

       
 
Jongho Jung, Kwanjung Yee and Shinkyu Jeong    
A large amount of heat flux from aerodynamic heating acts on reusable spacecraft; thus, an accurate heat flux prediction around spacecraft reentry is essential for developing a high-performance reusable spacecraft. Although the approximate convective-hea... ver más
Revista: Aerospace

 
Jiwei Tang, Weicheng Xie, Pingfang Zhou, Hui Yang, Tongxin Zhang and Quanbao Wang    
Stratospheric airships have much potential in military and commercial applications. Design, analysis and optimization of stratospheric airships involves complex trade-off of different disciplines, and hence a multidisciplinary approach is essential. This... ver más
Revista: Aerospace

 
Stanislav Karpuk, Yiyuan Ma and Ali Elham    
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials, load alleviation t... ver más
Revista: Aerospace

 
José D. Hoyos, Camilo Echavarría, Juan P. Alvarado, Gustavo Suárez, Juliana A. Niño and Jorge I. García    
An aero-structural algorithm to optimize a flying wing in cruise conditions for preliminary design is developed using two-way interaction between the structure and aerodynamics. A particle swarm routine is employed to solve the multi-objective optimizati... ver más
Revista: Aerospace

 
Yu Wang, Xiang Li, Tingjia Wu and Hailian Yin    
Since the taper ratio of most wings is not equal to 1, the beam-disk trailing edge deflection mechanism originally designed for the rectangular wing is not fully applicable to the non-equal chord wing. Moreover, it is not only expected that the wing shap... ver más
Revista: Aerospace