Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Approach and Landing Energy Prediction Based on a Long Short-Term Memory Model

Yahui Hu    
Jiaqi Yan    
Ertai Cao    
Yimeng Yu    
Haiming Tian and Heyuan Huang    

Resumen

The statistical analysis of civil aircraft accidents reveals that the highest incidence of mishaps occurs during the approach and landing stages. Predominantly, these accidents are marked by abnormal energy states, leading to critical situations like stalling and heavy landings. Therefore, it is of great significance to accurately predict the aircraft energy state in the approach and landing stages to ensure a safe landing. In this study, a deep learning method based on time sequence data for the prediction of the aircraft approach and landing energy states is proposed. Firstly, by conducting an extensive overview of the existing literature, three characteristic parameters of altitude, velocity, and glide angle were selected as the indicators to characterize the energy state. Following this, a semi-physical simulation platform for a certain type of aircraft was developed. The approach and landing experiments were carried out with different throttle sizes and flap deflection under different wind speeds and wind directions. Then, a deep learning prediction model based on Long Short-Term Memory (LSTM) was established based on the experimental data to predict the energy state indicators during the approach and landing phases. Finally, the established LSTM model underwent rigorous training and testing under different strategies, and a comparative analysis was carried out. The results demonstrated that the proposed LSTM model exhibited high accuracy and a strong generalization ability in predicting energy states during the approach and landing phases. These results offer a theoretical basis for designing energy early warning systems and formulating the relevant flight control laws in the approach and landing stages.

 Artículos similares

       
 
Huawei Sun, Anran Ju, Wentian Chang, Jingfei Liu, Jiayi Liu and Hanbing Sun    
Assessing the safety of amphibious aircraft hinges significantly on two key factors: wave-added resistance and motion stability during takeoff and landing on water surfaces. To tackle this, we employed the Reynolds-averaged Navier?Stokes (RANS) equations... ver más

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Zuodong Pan, Wei Guo, Hongming Sun, Yue Zhou and Yanjun Lan    
To ensure the safety and energy efficiency of autonomous sampling operations for a deep-sea landing vehicle (DSLV), the Safety Energy-Dynamic Window Approach (SE-DWA) algorithm was proposed. The safety assessment sub-function formed from the warning obst... ver más

 
David Gerhardinger, Anita Domitrovic, Karolina Krajcek Nikolic and Darko Ivancevic    
This paper introduces an expert system approach for predicting the remaining useful life (RUL) of light aircraft structural components by analyzing operational and maintenance records. The expert system consists of four modules: knowledge acquisition, kn... ver más
Revista: Aerospace

 
Zhe Zheng, Bo Zou, Wenbin Wei and Wen Tian    
The ability to accurately predict flight time of arrival in real time during a flight is critical to the efficiency and reliability of aviation system operations. This paper proposes a data-light and trajectory-based machine learning approach for the onl... ver más
Revista: Aerospace