Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning Approach for Trajectory Control of Tilt-Rotor UAV

Javensius Sembiring    
Rianto Adhy Sasongko    
Eduardo I. Bastian    
Bayu Aji Raditya and Rayhan Ekananto Limansubroto    

Resumen

This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a proportional?integral?derivative controller to enhance flight dynamics and data quality. The model architecture, implemented within the TensorFlow framework, undergoes iterative tuning for optimal performance. Testing involved two scenarios: wind-free conditions and wind disturbances. In wind-free conditions, the model demonstrated excellent tracking performance, closely tracking the desired altitude. The model?s robustness is further evaluated by introducing wind disturbances. Interestingly, these disturbances do not significantly impact the model performance. This research has demonstrated data-driven flight control in a tilt-rotor unmanned aerial vehicle, offering improved adaptability and robustness compared to traditional methods. Future work may explore further flight modes, environmental complexities, and the utilization of real test flight data to enhance the model generalizability.

 Artículos similares

       
 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water