Inicio  /  Aerospace  /  Vol: 11 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Regression Rate and Combustion Efficiency of Composite Hybrid Rocket Grains Based on Modular Fuel Units

Junjie Pan    
Xin Lin    
Zezhong Wang    
Ruoyan Wang    
Kun Wu    
Jinhu Liang and Xilong Yu    

Resumen

This study investigated combustion characteristics of composite fuel grains designed based on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure with nine acrylonitrile?butadiene?styrene helical blades. A paraffin-based fuel was embedded between adjacent blades. Two modifications of the helical structure framework were researched. One mirrored the helical blades, and the other periodically extended the helical blades by perforation. A laboratory-scale hybrid rocket engine was used to investigate combustion characteristics of the fuel grains at an oxygen mass flux of 2.1?6.0 g/(s·cm2). Compared with the composite fuel grain with periodically extended helical blades, the modified composite fuel grains exhibited higher regression rates and a faster rise of regression rates as the oxygen mass flux increased. At an oxygen mass flux of 6.0 g/(s·cm2), the regression rate of the composite fuel grains with perforation and mirrored helical blades increased by 8.0% and 14.1%, respectively. The oxygen-to-fuel distribution of the composite fuel grain with mirrored helical blades was more concentrated, and its combustion efficiency was stable. Flame structure characteristics in the combustion chamber were visualized using a radiation imaging technique. A rapid increase in flame thickness of the composite fuel grains based on the modular unit was observed, which was consistent with their high regression rates. A simplified numerical simulation was carried out to elucidate the mechanism of the modified modular units on performance enhancement of the composite hybrid rocket grains.

 Artículos similares

       
 
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu    
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co... ver más
Revista: Aerospace

 
Shuyuan Liu, Yu Zhang, Limin Wang, Zhengchun Chen and Songqi Hu    
The effect of mixing on coupled heat release and transfer performance of a novel segregated solid motor is numerically evaluated with a transient two-dimensional combustion model. The results show that vortex structures are formed and evolved in the comb... ver más
Revista: Aerospace

 
Nikolaos T. Giannakopoulos, Marina C. Terzi, Damianos P. Sakas, Nikos Kanellos, Kanellos S. Toudas and Stavros P. Migkos    
Agriculture firms face an array of struggles, most of which are financial; thus, the role of decision making is discerned as highly important. The agroeconomic indexes (AEIs) of Agriculture Employment Rate (AER), Chemical Product Price Index (CPPI), Farm... ver más
Revista: Information

 
Esra?a Alkafaween, Ahmad Hassanat, Ehab Essa and Samir Elmougy    
The genetic algorithm (GA) is a well-known metaheuristic approach for dealing with complex problems with a wide search space. In genetic algorithms (GAs), the quality of individuals in the initial population is important in determining the final optimal ... ver más
Revista: Applied Sciences

 
Heng Liu, Wenzhi Xu, Quanchun Yuan, Jin Zeng, Xiaohui Lei and Xiaolan Lyu    
In addressing the challenges of high energy consumption and low efficiency in fertilization borehole drilling for clayey soils in southern orchards, this study utilizes the Discrete Element Method to establish a simulation model for clayey soils. Through... ver más
Revista: Applied Sciences