Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Time-Constrained Nature-Inspired Optimization Algorithms for an Efficient Energy Management System in Smart Homes and Buildings

Ibrar Ullah and Sajjad Hussain    

Resumen

This paper proposes two bio-inspired heuristic algorithms, the Moth-Flame Optimization (MFO) algorithm and Genetic Algorithm (GA), for an Energy Management System (EMS) in smart homes and buildings. Their performance in terms of energy cost reduction, minimization of the Peak to Average power Ratio (PAR) and end-user discomfort minimization are analysed and discussed. Then, a hybrid version of GA and MFO, named TG-MFO (Time-constrained Genetic-Moth Flame Optimization), is proposed for achieving the aforementioned objectives. TG-MFO not only hybridizes GA and MFO, but also incorporates time constraints for each appliance to achieve maximum end-user comfort. Different algorithms have been proposed in the literature for energy optimization. However, they have increased end-user frustration in terms of increased waiting time for home appliances to be switched ON. The proposed TG-MFO algorithm is specially designed for nearly-zero end-user discomfort due to scheduling of appliances, keeping in view the timespan of individual appliances. Renewable energy sources and battery storage units are also integrated for achieving maximum end-user benefits. For comparison, five bio-inspired heuristic algorithms, i.e., Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search Algorithm (CSA), Firefly Algorithm (FA) and Moth-Flame Optimization (MFO), are used to achieve the aforementioned objectives in the residential sector in comparison with TG-MFO. The simulations through MATLAB show that our proposed algorithm has reduced the energy cost up to 32.25% for a single user and 49.96% for thirty users in a residential sector compared to unscheduled load.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Zenonas Theodosiou, Marios Thoma, Harris Partaourides and Andreas Lanitis    
The provision of information encourages people to visit cultural sites more often. Exploiting the great potential of using smartphone cameras and egocentric vision, we describe the development of a robust artwork recognition algorithm to assist users whe... ver más
Revista: Algorithms
Xihui Chen and Dejun Ning    
In a smart home with distributed energy resources, the home energy management system (HEMS) controls the photovoltaic (PV) storage system by executing the optimization algorithm to achieve the lowest power cost. The existing mixed integer linear programm... ver más
Revista: Energies
Arman Alahyari, David Pozo and Meisam Farrokhifar    
With the recent advent of technology within the smart grid, many conventional concepts of power systems have undergone drastic changes. Owing to technological developments, even small customers can monitor their energy consumption and schedule household ... ver más
Revista: Applied Sciences
Rab Nawaz Jadoon, WuYang Zhou, Faizan Ul Haq, Jawad Shafi, Iftikhar Ahmed Khan and Waqas Jadoon    
An emerging requirement in multimedia applications over the Internet is the provisioning of synchronized play out of multimedia streams on all the ultimate receivers. Most multimedia applications use real-time transport protocol/real-time control protoco... ver más
Revista: Applied Sciences