Inicio  /  Aerospace  /  Vol: 10 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle?s Ground Thermal Environment

Xiaodong Lv    
Guangming Zhang    
Zhiqing Bai    
Xiaoxiong Zhou    
Zhihan Shi and Mingxiang Zhu    

Resumen

In this paper, an adaptive neural network global fractional order fast terminal sliding mode model-free intelligent PID control strategy (termed as TDE-ANNGFOFTSMC-MFIPIDC) is proposed for the hypersonic vehicle ground thermal environment simulation test device (GTESTD). Firstly, the mathematical model of the GTESTD is transformed into an ultra-local model to ensure that the control strategy design process does not rely on the potentially inaccurate dynamic GTESTD model. Meanwhile, time delay estimation (TDE) is employed to estimate the unknown terms of the ultra-local model. Next, a global fractional-order fast terminal sliding mode surface (GFOFTSMS) is introduced to effectively reduce the estimation error generated by TDE. It also eliminates arrival time, accelerates the convergence speed of the sliding phase, guarantees finite time arrival, avoids the singularity phenomenon, and bolsters robustness. Then, as the upper bound of the disturbance error is unknown, an adaptive neural network (ANN) control is designed to approximate the upper bound of the estimation error closely and mitigate the chattering phenomenon. Furthermore, the stability of the control system and the convergence time are proven by the Lyapunov stability theorem and are calculated, respectively. Finally, simulation results are conducted to validate the efficacy of the proposed control strategy.

 Artículos similares

       
 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences

 
Zilin Zhao, Zhi Cai, Mengmeng Chang and Zhiming Ding    
Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large... ver más
Revista: Applied Sciences