Inicio  /  Aerospace  /  Vol: 9 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Efficient Numerical Integration Algorithm of Probabilistic Risk Assessment for Aero-Engine Rotors Considering In-Service Inspection Uncertainties

Guo Li    
Junbo Liu    
Huimin Zhou    
Liangliang Zuo and Shuiting Ding    

Resumen

Numerical integration methods have the characteristics of high efficiency and precision, making them attractive for aero-engine probabilistic risk assessment and design optimization of an inspection plan. One factor that makes the numerical integration method a suitable approach to in-service inspection uncertainties is the explicit derivation of the integration formula and integration domains. This explicit derivation ensures accurate characterization of a multivariable system?s failure risk evolution mechanism. This study develops an efficient numerical integration algorithm for probabilistic risk assessment considering in-service inspection uncertainties. The principle of probability conservation is applied to the transformation of the integration domain from the current flight cycle to the initial (N = 0) computational space. Consequently, the integration formula of failure probability is deduced, and a detailed mathematical demonstration of the proposed method is provided. An actual compressor disk is evaluated using the efficient numerical integration algorithm and the Monte Carlo simulation to validate the accuracy and efficiency of the proposed method. Results show that the time cost of the proposed algorithm is dozens of times lower than that of the Monte Carlo simulation, with a maximum relative error of 5%. Thus, the efficient numerical integration algorithm can be applied to failure analysis in the airworthiness design of commercial aero-engine components.

 Artículos similares

       
 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Antonio Chiariello, Gaetano Perillo, Mauro Linari, Raffaele Russo, Salvatore Orlando, Pasquale Vitale and Marika Belardo    
This study addresses the crucial role of post-buckling behavior analysis in the structural design of composite aeronautical structures. Traditional engineering practices tend to result in oversized composite components, increasing structural weight. EASA... ver más
Revista: Aerospace

 
Jian Wang, Ze Chen, Linghao Li, Chuan Wang, Kangle Teng, Qiang He, Jiren Zhou, Shanshan Li, Weidong Cao, Xiuli Wang and Hongliang Wang    
Submersible tubular pumps are an ideal choice for pump stations that require high flow rates and low lift. These pumps combine the unique features of submersible motors with axial flow pump technology, making them highly efficient and cost-effective. The... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
David S. Pellicer and Emilio Larrodé    
This paper shows the development of a numerical analysis model, which enables the calculation of the cargo transport capacity of a vehicle that circulates through a vacuum tube at high speed, whose effectiveness in transport is analyzed. The simulated tr... ver más
Revista: Algorithms