REVISTA
AI

   
Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  AI  /  Vol: 5 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

A Comprehensive Review of AI Techniques for Addressing Algorithmic Bias in Job Hiring

Elham Albaroudi    
Taha Mansouri and Ali Alameer    

Resumen

The study comprehensively reviews artificial intelligence (AI) techniques for addressing algorithmic bias in job hiring. More businesses are using AI in curriculum vitae (CV) screening. While the move improves efficiency in the recruitment process, it is vulnerable to biases, which have adverse effects on organizations and the broader society. This research aims to analyze case studies on AI hiring to demonstrate both successful implementations and instances of bias. It also seeks to evaluate the impact of algorithmic bias and the strategies to mitigate it. The basic design of the study entails undertaking a systematic review of existing literature and research studies that focus on artificial intelligence techniques employed to mitigate bias in hiring. The results demonstrate that the correction of the vector space and data augmentation are effective natural language processing (NLP) and deep learning techniques for mitigating algorithmic bias in hiring. The findings underscore the potential of artificial intelligence techniques in promoting fairness and diversity in the hiring process with the application of artificial intelligence techniques. The study contributes to human resource practice by enhancing hiring algorithms? fairness. It recommends the need for collaboration between machines and humans to enhance the fairness of the hiring process. The results can help AI developers make algorithmic changes needed to enhance fairness in AI-driven tools. This will enable the development of ethical hiring tools, contributing to fairness in society.

 Artículos similares