Inicio  /  Aerospace  /  Vol: 4 Núm: 2 Par: June (2017)  /  Artículo
ARTÍCULO
TITULO

Modeling Aerodynamics, Including Dynamic Stall, for Comprehensive Analysis of Helicopter Rotors

Khiem Van Truong    

Resumen

To fulfill the objective of a predictive tool for rotorcraft, comprehensive analysis (CA) needs to be capable of providing both accurate and time-efficient predictions of rotor air loads and structural loads. The more recent methodology based on comprehensive analysis coupled with high-fidelity computational fluid dynamics (CFD) has shown improved predictions of air loads, but it has not the strength of computational efficiency and the versatility of stand-alone CA. The present article is concerned with modeling aerodynamics about helicopter rotors for CA. The aerodynamics about rotors are very complex, encompassing subsonic to transonic flow with unsteady, stalled behavior and 3D effects. CA treats aerodynamics as separated into local and global flows. Semi-empirical models of dynamic stall were created in the 1970s?1990s for modeling unsteady local aerodynamics, including stalled flow. Most of them fail to provide good predictions of experimental results and also suffer problems of numerical convergence. The main effort in this study is about modeling local aerodynamics based on the revised ?ONERA?Hopf bifurcation model?. It is implemented in the comprehensive analysis code of ONERA according to a scheme that ensures numerical convergence. The experimental results obtained in the Wind Tunnel S1 of Modane (France) in 1991 on the Rotor 7A are considered for validation of the analysis under three flight test conditions: high-speed test, high-thrust tests with light stall and deep stall, respectively. There is a reasonable agreement between the predictions of CA with experimental results. The distinct features of the stall model are the modeling of the boundary-layer effects and the vortex-shedding phenomenon.

 Artículos similares

       
 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Julien Touboul, Veronica Morales-Marquez and Kostas Belibassakis    
The wave?current?seabed interaction problem is studied by using a coupled-mode system developed for modeling wave scattering by non-homogeneous, sheared currents in variable bathymetry regions. The model is based on a modal series expansion of wave veloc... ver más

 
Niki Balkamou and George Papagiannopoulos    
Steel Plate Shear Walls (SPSW) provide significant lateral load capacity and can be utilized in the seismic retrofit and upgrade of existing reinforced concrete (r/c) buildings. In this study, the application of SPSW to retrofit a r/c building designed a... ver más
Revista: Applied Sciences

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures