Inicio  /  Coatings  /  Vol: 8 Núm: 2 Par: Februar (2018)  /  Artículo
ARTÍCULO
TITULO

Study on the Properties of 1319 nm Ultra-High Reflector Deposited by Electron Beam Evaporation Assisted by an Energetic RF Ion Source

Songwen Deng    
Gang Li    
Feng Wang    
Qipeng Lv    
Long Sun and Yuqi Jin    

Resumen

Ultra-high reflectors, working as a critical optical component, has been widely applied as a cavity mirror in fine optical systems such as laser gyro, F-P interferometer, etc. For decades, ion beam sputtering (IBS) technology, which can deposit ultra-low loss and dense layers, has been commonly believed to be the only and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on other methods are rare and a reflectivity above 99.99% obtained by evaporation technology (including ion assisted evaporation) has not been seen yet. In the present study, an energetic radio frequency (RF) ion source was introduced during the electron beam evaporation process, which improved the layer quality dramatically. An ultra-high reflector at 1319 nm with reflectivity of 99.992% (measured by cavity-ring down method) was successfully deposited on a f100 mm × 25 mm single crystal silicon substrate whose surface roughness was approximately 0.420 nm. The surface figure of the reflector was accurately controlled superior to 1/6? (? = 632.8 nm). The measured absorption was approximately 3?5 ppm and the calculated scatter based on surface roughness measurement was approximately 6.64 ppm. Total loss of the reflector was systematically discussed. This study showed that it is possible to apply electron beam evaporation in ultra-high reflector manufacture and the method is capable of depositing reflectors with an aperture larger than f600 mm which is the maximum capacity of current IBS technology.

 Artículos similares

       
 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Yu Yang, Changhao Xin, Yidan Sun, Junzhen Di and Pengfei Liang    
Incomplete data indicate that coal gangue is accumulated in China, with over 2000 gangue hills covering an area exceeding 200,000 mu and an annual growth rate surpassing 800 million tons. This accumulation not only signifies a substantial waste of resour... ver más
Revista: Applied Sciences

 
Sixu Liu, Jianfei Xu, Nan Zhou, Yuzhe Zhang, Chaowei Dong and Zhuo Lv    
The mining of coal resources is accompanied by a large amount of solid waste such as gangue, which seriously affects the ecological environment. The gangue grouting backfilling technique can achieve the dual goals of gangue disposal and surface deformati... ver más
Revista: Applied Sciences

 
Zhifu Lin, Dasheng Xiao and Hong Xiao    
Flow through complex thermodynamic machinery is intricate, incorporating turbulence, compressibility effects, combustion, and solid?fluid interactions, posing a challenge to classical physics. For example, it is not currently possible to simulate a three... ver más
Revista: Aerospace

 
Zhongao Yang, Xiaohua Ding, Xin Liu, Abdoul Wahab, Zhongchen Ao, Ya Tian, Van Son Bang, Zhaoxi Long, Guodong Li and Penglin Ma    
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with si... ver más
Revista: Water