Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Deep Learning Approaches for Automatic Drum Transcription

Zakiya Azizah Cahyaningtyas    
Diana Purwitasari    
Chastine Fatichah    

Resumen

Drum transcription is the task of transcribing audio or music into drum notation. Drum notation is helpful to help drummers as instruction in playing drums and could also be useful for students to learn about drum music theories. Unfortunately, transcribing music is not an easy task. A good transcription can usually be obtained only by an experienced musician. On the other side, musical notation is beneficial not only for professionals but also for amateurs. This study develops an Automatic Drum Transcription (ADT) application using the segment and classify method with Deep Learning as the classification method. The segment and classify method is divided into two steps. First, the segmentation step achieved a score of 76.14% in macro F1 after doing a grid search to tune the parameters. Second, the spectrogram feature is extracted on the detected onsets as the input for the classification models. The models are evaluated using the multi-objective optimization (MOO) of macro F1 score and time consumption for prediction. The result shows that the LSTM model outperformed the other models with MOO scores of 77.42%, 86.97%, and 82.87% on MDB Drums, IDMT-SMT Drums, and combined datasets, respectively. The model is then used in the ADT application. The application is built using the FastAPI framework, which delivers the transcription result as a drum tab.

 Artículos similares

       
 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water