Inicio  /  Water  /  Vol: 9 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland

Pawel Marcinkowski    
Mikolaj Piniewski    
Ignacy Kardel    
Mateusz Szczesniak    
Rasmus Benestad    
Raghavan Srinivasan    
Stefan Ignar    
Tomasz Okruszko    

Resumen

Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021?2050, and far future: 2071? 2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models?Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment?European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.

 Artículos similares

       
 
Haoran Zhu, Liping Zhu, Lun Luo and Jiao Li    
Based on 360 event-based precipitation samples collected at six stations on the North Tibetan Plateau (NTP) in 2019?2020, we analyzed the influence of meteorological parameters, sub-cloud evaporation, moisture sources, and moisture transmission pathways ... ver más
Revista: Water

 
Jingting Li, Ming-Chih Chiu, Xiaowei Lin, Chan Liu, Zhen Tian, Qinghua Cai and Vincent H. Resh    
The species-area relationship (SAR) is a well-established, globally recognized ecological pattern, and research on SAR has expanded to include the phylogenetic diversity-area relationship (PDAR). However, this research has generally been limited to terre... ver más
Revista: Water

 
Hao Wang, Yejiao Wang and Fujie Jin    
The swelling-shrinkage behavior of expansive soils under climate changes will cause the crack development, which can be destructive of expansive soil slopes. This study investigated the effect of drying/wetting cycles on the stability of an expansive soi... ver más
Revista: Water

 
Ali Uzunlar and Muhammet Omer Dis    
The hydrological cycle should be scrutinized and investigated under recent climate change scenarios to ensure global water management and to increase its utilization. Although the FAO proposed the use of the Penman?Monteith (PM) equation worldwide to pre... ver más
Revista: Water

 
Chunjian Lyu, Jianglong Cui, Fangyuan Jin, Xiaojie Li and Yaning Xu    
The riparian zone has a proven ability to reduce agricultural nonpoint-source nitrogen pollution. However, prior studies have only assessed nitrification and denitrification and their influencing factors, such as hydrology, climate, vegetation, and soil ... ver más
Revista: Water