Inicio  /  Andean Geology  /  Vol: 40 Núm: 2 Par: 0 (2013)  /  Artículo
ARTÍCULO
TITULO

Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile

Frederick J. Swanson    
Julia A. Jones    
Charles M. Crisafulli    
Antonio Lara    

Resumen

The 2008-2009 eruption of Chaitén Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow. Each of these geophysical processes constitutes a type of ecosystem disturbance which involves a distinctive suite of disturbance mechanisms, namely burial by tephra and sediment, heating, abrasion, impact force, and canopy loading (accumulation of tephra in tree crowns). Each process affected specific areas, and created patches and disturbance gradients in the forest landscape. Coarse tephra (?gravel rain?, >5 cm depth) abraded foliage from tree canopies over an area of approximately 50 km2 north-northeast of the vent. Fine tephra (>10 cm depth) accumulated in tree crowns and led to breakage of branches in old forest and bowing of flexible, young trees over an area of about 480 km2. A directed blast down the north flank of the volcano damaged forest over an area of 4 km2. This blast zone included an area of tree removal near the crater rim, toppled forest farther down the slope, and standing, scorched forest around the blast perimeter. Fluvial deposition of >100 cm of remobilized tephra, beginning about 10 days after initiation of the eruption, buried floodplain forest in distinct, elongate streamside patches covering 5 km2 of the lower 19 km of the Rayas River and several km2 of the lower Chaitén River. Across this array of disturbance processes the fate of affected trees varied from complete mortality in the tree removal and pyroclastic flow areas, to no mortality in areas of thin tephra fall deposits. Tree damage included defoliation, loss of branches, snapping of tree trunks, abrasion of bark and ephiphytes, and uprooting. Damaged trees sprouted from epicormic buds located in trunks and branches, but sprouting varied over time among disturbance mechanisms and species. Although some effects of the Chaitén eruption are very similar to those from the 1980 eruption of Mount St. Helens (USA), interactions between biota and geophysical processes at Chaitén produced some unique effects. Examination of vegetation response helps interpret geophysical processes, and disturbance mechanisms influence early stages of biotic response to an eruption.

 Artículos similares

       
 
Kariem A. Ghazal, Olkeba Tolessa Leta, Aly I. El-Kadi and Henrietta Dulai    
Hydrological modeling is an important tool that can be used to assess water resources? availability and sustainability that are necessary for food security and ecological health of coastal regions. In this study, we assessed the impacts of land use and c... ver más
Revista: Hydrology

 
Jorge Eduardo Bustillos A., Jorge Eduardo Romero, Alicia Guevara C., Juan Díaz-Alvarado     Pág. 47 - 77
The Tungurahua volcano (Northern Andean Volcanic Zone) has been erupting since 1999, with at least four eruptive phases up to present. Although a dozen of research focuses in tephra fall deposits during this period, none of them cover the full eruptive c... ver más
Revista: Andean Geology

 
Luis A. Spalletti, Carlos O. Limarino     Pág. 328 - 338
The end of the Permian period is marked by global warming and the biggest known mass extinction on Earth. The crisis is commonly attributed to the formation of large igneous provinces because continental volcanic emissions have the potential to control a... ver más
Revista: Andean Geology

 
Aldo Alván De la Cruz, Astrid Criales, Hilmar von Eynatten, Istvan Dunkl, Axel Gerdes, Javier Jacay     Pág. 17 - 38
The Camaná-Mollendo Basin is an active-margin depression ~NW-SE elongated, which is located in the forearc of southern Perú and extends from the Coastal Cordillera to the Perú-Chile Trench. This basin consists of a grabens and half-graben complex, filled... ver más
Revista: Andean Geology