ARTÍCULO
TITULO

Current Status of Single Particle Imaging with X-ray Lasers

Zhibin Sun    
Jiadong Fan    
Haoyuan Li and Huaidong Jiang    

Resumen

The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules, clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant multi-disciplinary effort has since been devoted to work on the technical challenges of SPI such as radiation damage, beam characterization, beamline instrumentation and optics, sample preparation and delivery and algorithm development at multiple institutions involved in the SPI initiative. Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and Optical (AMO) instrument of LCLS. Meanwhile, diffraction patterns with signal above noise up to the corner of the detector with a resolution of ~6 Ångström (Å) were also recorded with hard X-rays at the Coherent X-ray Imaging (CXI) instrument, also at LCLS. Achieving atomic resolution is truly a grand challenge and there is still a long way to go in light of recent developments in electron microscopy. However, the potential for studying dynamics at physiological conditions and capturing ultrafast biological, chemical and physical processes represents a tremendous potential application, attracting continued interest in pursuing further method development. In this paper, we give a brief introduction of SPI developments and look ahead to further method development.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Karma Tempa, Masengo Ilunga, Abhishek Agarwal and Tashi    
Gelephu, located in the Himalayan region, has undergone significant development activities due to its suitable topography and geographic location. This has led to rapid urbanization in recent years. Assessing land use land cover (LULC) dynamics and Norma... ver más
Revista: Applied Sciences

 
Wenzhi Xu, Quanchun Yuan, Jin Zeng and Xiaolan Lyu    
As a key component of fertilization equipment, the fertilizer discharger has an important impact on the accuracy of the amount of fertilizer applied during the fertilization process. Countries around the world have been advocating for reducing the use of... ver más
Revista: Applied Sciences

 
Junnan Zhou and Tomohiro Tabata    
After nearly a decade of rapid development, woody biomass has been widely used in Japan for power generation and heating. However, it has faced bottlenecks in recent years, leading to a decline in its popularity. This study aimed to elucidate the current... ver más
Revista: Applied Sciences

 
Yabin Tao and Ruixin Zhang    
Low-disturbance mining in surface mining (LDM) can transform traditional surface mine production systems into a more sustainable model by reducing the disturbance of surface mining, minimizing pollutant emissions, and reducing ecological impacts. The pur... ver más
Revista: Applied Sciences