Inicio  /  Applied Sciences  /  Vol: 7 Núm: 3 Par: March (2017)  /  Artículo
ARTÍCULO
TITULO

Modeling and Finite Element Analysis of Load-Carrying Performance of a Wind Turbine Considering the Influence of Assembly Factors

Jianmei Wang    
Ke Ning    
Liang Tang    
Reza Malekian    
Yinan Liang and Zhixiong Li    

Resumen

In this work, a wind turbine shrink disk is used as the research object to investigate load-carrying performance of a multi-layer interference fit, and the theoretical model and finite element model are constructed. According to those models, a MW-level turbine shrink disk is designed, and a test device is developed to apply torque to this turbine shrink disk by hydraulic jack. Then, the circumferential slip between the contact surfaces is monitored and the slip of all contact surfaces is zero. This conclusion verifies the reasonability of the proposed models. The effect of the key influencing factors, such as machining deviation, assembly clearance and propel stroke, were analyzed. The contact pressure and load torque of the mating surfaces were obtained by building typical models with different parameters using finite element analysis (FEA). The results show that the minimum assembly clearance and the machining deviation within the machining range have little influence on load-carrying performance of multi-layer interference fit, while having a greater influence on the maximum assembly clearance and the propel stroke. The results also show that the load-carrying performance of a multiple-layer interference fit can be ensured only if the key factors are set within a reasonable design range. To avoid the abnormal operation of equipment caused by insufficient load torque, the propel stroke during practical assembly should be at least 0.95 times the designed propel stroke, which is significant in guiding the design and assembly of the multi-layer interference fit.

 Artículos similares

       
 
Huile Zhang, Zeyu Sun, Pengpeng Zhi, Wei Wang and Zhonglai Wang    
This paper develops a material-structure integrated design and optimization method based on a multiscale approach for the lightweight design of CFRP car doors. Initially, parametric modeling of RVE is implemented, and their elastic performance parameters... ver más
Revista: Applied Sciences

 
Niki Balkamou and George Papagiannopoulos    
Steel Plate Shear Walls (SPSW) provide significant lateral load capacity and can be utilized in the seismic retrofit and upgrade of existing reinforced concrete (r/c) buildings. In this study, the application of SPSW to retrofit a r/c building designed a... ver más
Revista: Applied Sciences

 
Carlo Boursier Niutta, Pierpaolo Padula, Andrea Tridello, Marco Boccaccio, Francesco Acerra and Davide S. Paolino    
This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the ... ver más
Revista: Applied Sciences

 
Zifeng Zhao, Xuesong Yang, Ding Ding, Qiangyong Wang, Feiran Zhang, Zhicheng Hu, Kaikai Xu and Xuelin Wang    
Physics-informed DeepONet (PI_DeepONet) is utilized for the reconstruction task of structural displacement based on measured strain. For beam and plate structures, the PI_DeepONet is built by regularizing the strain?displacement relation and boundary con... ver más
Revista: Applied Sciences

 
Chia-Ho Wang, Hsiang-Lin Yu and Tsang-Jung Chang    
Currently, for modeling two-dimensional (2D) solute transport during pluvial and fluvial floods, the finite volume (FV) models are widely used because of their strong ability to handle steep concentration and velocity gradients from the flow advection te... ver más
Revista: Water