Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Localized Convolutional Neural Networks for Geospatial Wind Forecasting

Arnas Uselis    
Mantas Luko?evicius and Lukas Stasytis    

Resumen

Convolutional Neural Networks (CNN) possess many positive qualities when it comes to spatial raster data. Translation invariance enables CNNs to detect features regardless of their position in the scene. However, in some domains, like geospatial, not all locations are exactly equal. In this work, we propose localized convolutional neural networks that enable convolutional architectures to learn local features in addition to the global ones. We investigate their instantiations in the form of learnable inputs, local weights, and a more general form. They can be added to any convolutional layers, easily end-to-end trained, introduce minimal additional complexity, and let CNNs retain most of their benefits to the extent that they are needed. In this work we address spatio-temporal prediction: test the effectiveness of our methods on a synthetic benchmark dataset and tackle three real-world wind prediction datasets. For one of them, we propose a method to spatially order the unordered data. We compare the recent state-of-the-art spatio-temporal prediction models on the same data. Models that use convolutional layers can be and are extended with our localizations. In all these cases our extensions improve the results, and thus often the state-of-the-art. We share all the code at a public repository.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Rui Zhang and Xin Li    
Graph convolutional networks (GCNs) have been successfully applied to learning tasks on graph-structured data. However, most traditional GCNs based on graph convolutions assume homophily in graphs, which leads to a poor performance when dealing with hete... ver más
Revista: Applied Sciences
Juanjuan Feng, Jia Li, Wenjie Zhong, Junhui Wu, Zhiqiang Li, Lingshuai Kong and Lei Guo    
Arctic sea ice prediction is of great practical significance in facilitating Arctic route planning, optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep learning models have been developed for sea ice ... ver más
Navaneethakrishna Makaram, Sarvagya Gupta, Matthew Pesce, Jeffrey Bolton, Scellig Stone, Daniel Haehn, Marc Pomplun, Christos Papadelis, Phillip Pearl, Alexander Rotenberg, Patricia Ellen Grant and Eleonora Tamilia    
In drug-resistant epilepsy, a visual inspection of intracranial electroencephalography (iEEG) signals is often needed to localize the epileptogenic zone (EZ) and guide neurosurgery. The visual assessment of iEEG time-frequency (TF) images is an alternati... ver más
Revista: Algorithms
Sunmin Lee, Won-Kyung Baek, Hyung-Sup Jung and Saro Lee    
In recent years, the incidence of localized heavy rainfall has increased as abnormal weather events occur more frequently. In densely populated urban areas, this type of heavy rain can cause extreme landslide damage, so that it is necessary to estimate a... ver más
Revista: Applied Sciences
Liang Ge, Siyu Li, Yaqian Wang, Feng Chang and Kunyan Wu    
Traffic speed prediction plays a significant role in the intelligent traffic system (ITS). However, due to the complex spatial-temporal correlations of traffic data, it is very challenging to predict traffic speed timely and accurately. The traffic speed... ver más
Revista: Applied Sciences