ARTÍCULO
TITULO

Numerical Investigation on Cavitation Vortex Dynamics of a Centrifugal Pump Based on Vorticity Transport Method

Qinghui Meng    
Xi Shen    
Xutao Zhao    
Gang Yang and Desheng Zhang    

Resumen

Cavitation is one of the most important aspects of the stable and safe operation of a centrifugal pump. To examine the dynamics of cavitation vortex in a centrifugal pump, the cavitating flow is investigated by using the modified shear stress transport (SST) k-? turbulence model with the Zwart cavitation model. The numerical results are confirmed by comparing them with those obtained from experimental tests. The results show that there is a critical cavitation number of sc at each flow rate condition. As the cavitation number s exceeds sc, the pump head remains stable. Conversely, the head rapidly decreases when the s falls below sc. As the s decreases, the pump experiences successively incipient cavitation, slight cavitation, and severe cavitation. At the stage of severe cavitation conditions, the vortex structures are generated at the tail of cavitation in the flow passage. The vorticity transport method is employed to analyze the vortex dynamics, and it is found that the vortex area contains high vorticity. The dominant contribution to the generation of vorticity comes from the vortex stretching and dilation terms acting in different directions. The contribution of the baroclinic torque to vorticity generation at the vapor-liquid interface is significant. The Coriolis force has a negligible impact on vorticity transport.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace

 
Ge Wang, Chengke Li, Weiqiang Pu, Bocheng Zhou, Haiwei Yang and Zenan Yang    
A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?str... ver más
Revista: Aerospace