Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of a Vortex Diverter Designed for Improving the Performance of the Submerged Inlet

Junyao Zhang    
Hao Zhan and Baigang Mi    

Resumen

The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the performance of the submerged inlet and investigates the aerodynamic coupling mechanism between the vortex diverter and the submerged inlet in detail. Firstly, based on the flow field characteristics of the submerged inlet, the design principles of the vortex diverter are proposed. Then, the impact of the vortex diverter on the flow field of the submerged inlet is analyzed using the numerical method. Finally, the matching design between the vortex diverter and the submerged inlet is explored. The results show that the vortex diverter improves the average total pressure of the airflow inside the inlet by exhausting the low-energy flow from the larger radius side of the inlet, thereby suppressing flow separation and enhancing flow field uniformity. The vortex diverter improves the intake performance of the submerged inlet under different incoming flow Mach numbers, inlet exit Mach numbers, angles of attack, and small sideslip angles. The maximum increase in the total pressure recovery coefficient is 3.1099%, and the maximum reduction in the circumferential total pressure distortion is 49.5207%. Among the design parameters, the horizontal distance between the leading edge of the vortex diverter and the inlet lip has the greatest influence on the intake performance, and the best control effect is achieved when the vortex diverter is installed at the throat position. Furthermore, after installing the vortex diverter, reducing the side-edge angle of the entrance appropriately can effectively reduce the intensity of the secondary flow, thereby improving the total pressure recovery at the exit and reducing the distortion rate.

 Artículos similares

       
 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace