Inicio  /  Water  /  Vol: 16 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects

Xianshan Liu    
Xiaolei Luo    
Shaowei Liu    
Pugang Zhang    
Man Li and Yuhua Pan    

Resumen

The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal exploitation process profoundly influence the intrinsic mechanisms of fracture seepage and heat transfer. Based on the FLUENT 2020 software, single-phase and multiphase heat?flow coupling models were established, and the alterations stemming from the phase transition in seepage and heat transfer mechanisms were dissected. The results indicate that, without considering phase transition, the geometric morphology of the fractures controlled the distribution of local heat transfer coefficients, the magnitude of which was influenced by different boundary conditions. Moreover, based on the Forchheimer formula, it was found that the heat transfer process affects nonlinear seepage behavior significantly. After considering the phase transition, the fluid exhibited characteristics similar to shear-diluted fluids and, under the same pressure gradient, the increment of flow rate was higher than the increment in the linearly increasing scenario. In the heat transfer process, the gas volume percentage played a dominant role, causing the local heat transfer coefficient to decrease with the increase in gas content. Therefore, considering fluid phase transition can more accurately reveal seepage characteristics and the evolution law.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más