Inicio  /  Applied Sciences  /  Vol: 13 Par: 24 (2023)  /  Artículo
ARTÍCULO
TITULO

Convolutional Neural Network-Based Classification of Steady-State Visually Evoked Potentials with Limited Training Data

Marcin Kolodziej    
Andrzej Majkowski    
Remigiusz J. Rak and Przemyslaw Wiszniewski    

Resumen

One approach employed in brain?computer interfaces (BCIs) involves the use of steady-state visual evoked potentials (SSVEPs). This article examines the capability of artificial intelligence, specifically convolutional neural networks (CNNs), to improve SSVEP detection in BCIs. Implementing CNNs for this task does not require specialized knowledge. The subsequent layers of the CNN extract valuable features and perform classification. Nevertheless, a significant number of training examples are typically required, which can pose challenges in the practical application of BCI. This article examines the possibility of using a CNN in combination with data augmentation to address the issue of a limited training dataset. The data augmentation method that we applied is based on the spectral analysis of the electroencephalographic signals (EEG). Initially, we constructed the spectral representation of the EEG signals. Subsequently, we generated new signals by applying random amplitude and phase variations, along with the addition of noise characterized by specific parameters. The method was tested on a set of real EEG signals containing SSVEPs, which were recorded during stimulation by light-emitting diodes (LEDs) at frequencies of 5, 6, 7, and 8 Hz. We compared the classification accuracy and information transfer rate (ITR) across various machine learning approaches using both real training data and data generated with our augmentation method. Our proposed augmentation method combined with a convolutional neural network achieved a high classification accuracy of 0.72. In contrast, the linear discriminant analysis (LDA) method resulted in an accuracy of 0.59, while the canonical correlation analysis (CCA) method yielded 0.57. Additionally, the proposed approach facilitates the training of CNNs to perform more effectively in the presence of various EEG artifacts.

Palabras claves

 Artículos similares

       
 
Huang Feng and Yu Zhang    
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput... ver más
Revista: Aerospace

 
Marco Leo, Pierluigi Carcagnì, Luca Signore, Francesco Corcione, Giulio Benincasa, Mikko O. Laukkanen and Cosimo Distante    
Colorectal cancer is one of the most lethal cancers because of late diagnosis and challenges in the selection of therapy options. The histopathological diagnosis of colon adenocarcinoma is hindered by poor reproducibility and a lack of standard examinati... ver más
Revista: AI

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Chunchang Zhang and Ji Zeng    
The real-time transmission of ship status data from vessels to shore is crucial for live status monitoring and guidance. Traditional reliance on expensive maritime satellite systems for this purpose is being reconsidered with the emergence of the global ... ver más

 
Mingyoung Jeng, Alvir Nobel, Vinayak Jha, David Levy, Dylan Kneidel, Manu Chaudhary, Ishraq Islam, Evan Baumgartner, Eade Vanderhoof, Audrey Facer, Manish Singh, Abina Arshad and Esam El-Araby    
Convolutional neural networks (CNNs) have proven to be a very efficient class of machine learning (ML) architectures for handling multidimensional data by maintaining data locality, especially in the field of computer vision. Data pooling, a major compon... ver más
Revista: Algorithms