Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Prediction of Hourly Airport Operational Throughput with a Multi-Branch Convolutional Neural Network

Huang Feng and Yu Zhang    

Resumen

Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput is affected by convective weather in the vicinity of the airport and how to predict short-term airport operational throughput have not been well studied. Convective weather near the airport could make arrivals miss their positions in the arrival stream and reduce airfield efficiency in terms of the utilization of runway capacities. This research leverages the learning-based method (MB-ResNet model) to predict airport hourly throughput and takes Hartsfield?Jackson Atlanta International Airport (ATL) as the case study to demonstrate the developed method. To indicate convective weather, this research uses Rapid Refresh model (RAP) data from the National Oceanic and Atmospheric Administration (NOAA). Although it is a comprehensive and powerful weather data product, RAP has not been widely used in aviation research. This study demonstrated that RAP data, after being carefully decoded, cleaned, and pre-processed, can play a significant role in explaining airfield efficiency variation. Applying machine learning/deep learning in air traffic management is an area worthy of the attention of aviation researchers. Such advanced artificial intelligence techniques can make use of big data from the aviation sector and improve the predictability of the national airspace system and, consequently, operational efficiency. The short-term airport operational throughput predicted in this study can be used by air traffic controllers and airport managers for the allocations of resources at airports to improve airport operations.

 Artículos similares

       
 
Jeremy Feinstein, Quentin Ploussard, Thomas Veselka and Eugene Yan    
Methods for downstream river flow prediction can be categorized into physics-based and empirical approaches. Although based on well-studied physical relationships, physics-based models rely on numerous hydrologic variables characteristic of the specific ... ver más
Revista: Water

 
Shiu-Shin Lin, Jheng-Hua Song, Kai-Yang Zhu, Yi-Chuan Liu and Hsien-Cheng Chang    
Typhoon intensity forecast is an important issue. The objective of this study is to construct a 5-day 12-hourly typhoon intensity forecast model based on the adaptive neuro-fuzzy inference systems (ANFIS) to improve the typhoon intensity forecast in the ... ver más
Revista: Water

 
Jibran Khan, Erik Thysell, Claus Backalarz, Per Finne, Ole Hertel and Steen Solvang Jensen    
This article aims to assess the performance of Nord2000, RTN-96, and CNOSSOS-EU, the Nordic and European noise prediction standards, in predicting daily LAeq24h and Lden levels (dBA), by comparing them with measurements gathered over 76 days from the E45... ver más
Revista: Acoustics

 
Stamatis C. Batelis and Ioannis Nalbantis    
The hydrological impact of large-scale forest fires in a large basin is investigated on both a daily and an hourly basis. A basin of 877 km2 was chosen, with 37% of its area having been burnt in the summer of 2007. Five models are employed, namely SWAT (... ver más
Revista: Water

 
Lei Han, Qiyan Ji, Xiaoyan Jia, Yu Liu, Guoqing Han and Xiayan Lin    
Deep learning methods have excellent prospects for application in wave forecasting research. This study employed the convolutional LSTM (ConvLSTM) algorithm to predict the South China Sea (SCS) significant wave height (SWH). Three prediction models were ... ver más