Inicio  /  Water  /  Vol: 15 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Biofilm-Enhanced Natural Zeolite Material in Purification Performance for Slaughterhouse Wastewater

Timoth Mkilima    
Kulyash Meiramkulova    
Aliya Kydyrbekova    
Tursynkul Bazarbayeva    
Daldabayeva Gulnur    
Zholdasbek Aknur    
Abzal Shegenbayev    
Dzhexenbayev Nurbolat    
Gulaina Oshanova and Kaisagaliyeva Gulzhakhan    

Resumen

This study focuses on evaluating the efficacy of biofilm-enhanced natural zeolite for the purification of slaughterhouse wastewater. The investigation encompasses four distinct treatment methods: employing natural zeolite without biofilm, integrating biofilm into 1?2 mm particle size natural zeolite, enhancing biofilm in less than 4 mm particle size natural zeolite, and introducing biofilm in less than 8 mm particle size natural zeolite. The outcomes underscore the substantial improvement brought about by biofilm incorporation. For instance, within the natural zeolite treatment system without biofilm, the final effluent retained 28 NTU of turbidity. In contrast, utilizing the <8 mm particle size with biofilm resulted in 3.2 NTU of turbidity in the treated effluent, 2.45 NTU for the <4 mm particle size with biofilm, and 1.02 NTU for the 1?2 mm particle size zeolite system with biofilm. Notably, the achieved removal rates were significant, reaching 79.88% for natural zeolite without biofilm, 97.69% for the <8 mm particle size with biofilm, 99.27% for the <4 mm particle size with biofilm, and 98.24% for the 1?2 mm particle size zeolite system with biofilm. It is noteworthy that the removal efficiencies varied from 50 to 100% for wastewater samples subjected to the treatment system without biofilm, 65.7?100% with the <8 mm particle size biofilm, 71.4?100% with the <4 mm particle size biofilm, and 71.7?100% with the 1?2 mm particle size zeolite system biofilm. These findings collectively emphasize the pivotal role of biofilm in enhancing treatment outcomes, presenting a promising avenue for optimizing wastewater treatment efficiency.

 Artículos similares

       
 
Qiang Cheng, Gun Huang, Zhiqiang Li, Jie Zheng and Qinming Liang    
The gas contained in coal plays a crucial role in triggering coal and gas outbursts. During an outburst, a large quantity of gas originally absorbed by coal is released from pulverized coal. The role this part of the gas plays in the process of coal and ... ver más
Revista: Applied Sciences

 
Shengbo Hu, Zhijun Li, Peng Lu, Qingkai Wang, Jie Wei and Qiuming Zhao    
In their natural state, snow crystals are influenced by the atmosphere during formation and multiple factors after landing, resulting in varying particle sizes and unstable particle morphologies that are challenging to quantify. The current research main... ver más
Revista: Water

 
Kamila Haule, Maria Kubacka, Henryk Toczek, Barbara Lednicka, Boguslaw Pranszke and Wlodzimierz Freda    
Seawater turbidity is a common water quality indicator measured in situ and estimated from space on a regular basis. However, it is rarely correlated with the inherent optical properties of seawater, which convey information about seawater composition. I... ver más
Revista: Water

 
Ho-Jun Yoo, Hyoseob Kim, Tae-Soon Kang, Ki-Hyun Kim, Ki-Young Bang, Jong-Beom Kim and Moon-Sang Park    
Coastal erosion is caused by various factors, such as harbor development along coastal areas and climate change. Erosion has been accelerated recently due to sea level rises, increased occurrence of swells, and higher-power storm waves. Proper understand... ver más

 
Munsu Kim, Lorena Perez-Andrade, Luke N. Brewer and Gregory W. Kubacki    
This paper investigates the effect of the microstructure on the corrosion behavior of cold sprayed (CS) AA5083 compared to its wrought counterpart. It has been shown that the microstructure of CS aluminum alloys, such as AA2024, AA6061, and AA7075, affec... ver más