Inicio  /  Water  /  Vol: 7 Par: 9 (2015)  /  Artículo
ARTÍCULO
TITULO

Integrated River and Coastal Flow, Sediment and Escherichia coli Modelling for Bathing Water Quality

Guoxian Huang    
Roger A. Falconer and Binliang Lin    

Resumen

Due to the increasing economic and cultural value of bathing waters and the shellfish industry in the UK and worldwide, water quality in estuarine and coastal waters has attracted considerable public attention in recent years. To obtain accurate predictions of the concentration distributions of faecal indicator organisms (FIOs) in coastal waters for better management of bathing water compliance, it is necessary to build an integrated modelling system to predict the complete diffuse and point source inputs from river and catchment basins. In the present paper, details are given of the development of such an integrated modelling system for simulating the transport and decay processes of FIOs, from catchment areas upstream from the coastal region, in which a distributed catchment module, a 1D river network module and a 2D estuarine and coastal module are linked dynamically by boundary inputs and outputs. Extensive measured data from the catchments, river networks and estuaries have been collated to determine the model parameters. Verification results of the distribution of water levels, flows and velocities, and suspended sediment and Escherichia coli concentrations, at controlled monitoring sites are presented, which show that the integrated model predictions generally agree well with the measurements, although locally appreciable errors can occur. The model results also highlight the importance of including the flux of FIOs via sediments being an important factor in terms of assessing the quality of bathing waters. The main factors influencing the relatively high concentration values in the bathing region are analysed, based on the model predictions and measured data, with four categories of FIO concentration levels being reviewed.

 Artículos similares

       
 
Carlos Alfonso Zafra-Mejía, Hugo Alexander Rondón-Quintana and Carlos Felipe Urazán-Bonells    
The objective of this paper is to use autoregressive, integrated, and moving average (ARIMA) and transfer function ARIMA (TFARIMA) models to analyze the behavior of the main water quality parameters in the initial components of a drinking water supply sy... ver más
Revista: Hydrology

 
Kevin S. Sambieni, Fabien C. C. Hountondji, Luc O. Sintondji, Nicola Fohrer, Séverin Biaou and Coffi Leonce Geoffroy Sossa    
Climate and land cover changes are key factors in river basins? management. This study investigates on the one hand 60-year (1960 to 2019) rainfall and temperature variability using station data combined with gridded data, and on the other hand land cove... ver más
Revista: Hydrology

 
Yuxiu Liu, Xing Yuan, Yang Jiao, Peng Ji, Chaoqun Li and Xindai An    
Integrating numerical weather forecasts that provide ensemble precipitation forecasts, land surface hydrological modeling that resolves surface and subsurface hydrological processes, and artificial intelligence techniques that correct the forecast bias, ... ver más
Revista: Water

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Haibo Chu, Zhuoqi Wang and Chong Nie    
Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and ... ver más
Revista: Water