Inicio  /  Water  /  Vol: 15 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

Influence of Climatic Factors on the Water Footprint of Dairy Cattle Production in Hungary?A Case Study

István Waltner    
Attila Ribács    
Borbála Gémes and András Székács    

Resumen

Our study aims to provide a look at how the production of dairy cattle is affecting water resources in Hungary. Utilizing the AquaCrop model and field data from a selected field in Hungary, we focused on the evapotranspiration (ET) and water footprint (WF) of maize (the dominant component of silage mixes), while for other feed crops, we obtained data from scientific literature sources. We also considered drinking and servicing water consumption of dairy cattle, utilizing observations from a specific farm, as well as estimating potential heat stress at the country level. Our findings indicated increasing trends of crop ET as well as biomass production for maize, without significant correlations between the two parameters. Spatiotemporal analysis revealed a significant rise in the number of days with potential heat stress based on temperature-humidity indices, manifesting in practically the entire area of Hungary. Thus, while crop ET rates and corresponding crop water use values (4989?5342 m3/ha) did not show substantial changes, maize WF in silage cultivation rose from 261.9 m3/t dry biomass in 2002 to 378.0 m3/t dry biomass in 2020. Feed and water intake was subsequently recorded on a cattle farm and assessed as green and blue water use. Drinking (blue) water uptake, ranging between 74.7 and 101.9 L/dairy cow/day, moderately correlated with temperature-humidity indices as heat stress indicators (r2 = 0.700?0.767, p < 0.05). Servicing water was not recorded daily, but was calculated as a daily average (18 L/dairy cow/day), and was also considered in blue water usage. In contrast, feed consumption at the cattle farm corresponded to 13,352 ± 4724 L green water/dairy cow/day. Our results indicate that while the WF of animal feed remains a dominant factor in the total water use of dairy cattle farms, drinking water consumption and related costs of adaptive measures (such as adaptive breeding, modified housing, and technological measures) are expected to increase due to potential heat stress, particularly in selected regions where farmers should focus more on housing and technological solutions, as well as selecting for thermotolerance.

 Artículos similares

       
 
Jingshi Liu, Guligena Halimulati, Yuting Liu, Jianxin Mu and Namaiti Tuoheti    
The climatic warming-induced shrinking of permafrost currently encompasses 65% of alpine areas in North China, where a large population relies on its water and land resources. With increasing recognition of the economic and ecological impacts of permafro... ver más
Revista: Water

 
Elena S. Izhitskaya, Alexander V. Egorov and Peter O. Zavialov    
The variability of the dissolved methane content in coastal zones is an important component of the biogeochemical cycle in the marine ecosystem. The objective of this study is to investigate the seasonal variability of dissolved methane distribution in t... ver más

 
Xianglong Hou, Hui Yang, Jiansheng Cao, Wenzhao Feng and Yuan Zhang    
Groundwater evapotranspiration (ETg) is an important component of the hydrological cycle in water-scarce regions and is important for local ecosystems and agricultural irrigation management. However, accurate estimation of ETg is not easy due to uncertai... ver más
Revista: Water

 
Xin Lan, Wenxiong Jia, Guofeng Zhu, Yue Zhang, Zhijie Yu and Huifang Luo    
Stable isotopes of precipitation play an important role in understanding hydrological and climatic processes of arid inland river basins. In order to better understand the difference of regional water cycle and precipitation patterns, precipitation sampl... ver más
Revista: Water

 
Rocío Escandón, Carmen María Calama-González, Alicia Alonso, Rafael Suárez and Ángel Luis León-Rodríguez    
Climate change will have a great impact on the hottest climates of southern Europe and the existing residential stock will be extremely vulnerable to these future climatic conditions. Therefore, there is an urgent need to update this building stock consi... ver más
Revista: Buildings