ARTÍCULO
TITULO

Modelling of Chloride Concentration Profiles in Concrete by the Consideration of Concrete Material Factors under Marine Tidal Environment

Xueli Ju    
Linjian Wu    
Mingwei Liu    
Han Jiang and Wenxiao Zhang    

Resumen

The corrosion of reinforcement induced by chloride ions is one of the most significant causes of durability deterioration for reinforced concrete (RC) buildings. The concrete material factors, including the water-to-cement ratio (w/c) of concrete, as well as the content, shape, particle grading, and random distribution of coarse aggregate embedded in mortar, have a marked effect on chloride transport performance within concrete. However, comprehensive consideration for the effects of both w/c and coarse aggregate performances on chloride diffusion characteristics in concrete is scarce, especially regarding the chloride diffusion model of concrete. In this paper, an indoor exposure experiment exploring chloride ions intruding into mortar and concrete specimens with w/c = 0.4, 0.5 and 0.6 was carried out, in order to acquire the chloride diffusion parameters for concrete three-phases composites. Based on the numerical algorithm of random generation and placement of two-dimensional random convex polygon coarse aggregate, mesoscopic numerical models for concrete, considering various coarse aggregate contents as well as grading, were established. Using the numerical simulation method of finite element analysis for chloride transport in cement-based materials, which can replace some of the exposure tests, the influences of w/c, coarse aggregate content and grading on chloride diffusion performance in concrete mesoscopic models were systematically probed. According to the Fick?s second law, a chloride diffusion model by the consideration of w/c, volume fraction of coarse aggregate (VFCA), and maximum size of coarse aggregate (MSCA) was developed to assess the chloride concentration profiles in concrete under arbitrary w/c, coarse aggregate content, and coarse aggregate grading conditions. Certainly, the precision accuracy for this proposed chloride diffusion model was validated. The research results can provide theoretical support for chloride erosion behavior and structural durability assessment of concrete with different mix proportions.

 Artículos similares

       
 
Mohammed H. Yas, Mohammed M. Kadhum and Watheq G. B. Al-Dhufairi    
Concrete is the central pile for the infrastructure that maintains civilisation and human life. The concrete industry faces many challenges, including improving mechanical properties, eco-friendliness, and durability. In this context, the present study f... ver más
Revista: Infrastructures

 
Boutros El Hajj, Bruno Castanier, Franck Schoefs and Emilio Bastidas-Arteaga    
The objective of this paper is to propose tools for the lifecycle management of infrastructure by showing the slow degradation processes for which inspection data are accessible, especially the data obtained from non-destructive testing (NDT) and structu... ver más
Revista: Infrastructures

 
Augusto M. Gomes, Gonçalo Azevedo, Alcínia Zita Sampaio and Alberto Sánchez Lite    
Building Information Modelling (BIM) is a methodology supported on technological evolution achievements, and consists of a set of processes and tools that allows the creation of a digital three-dimensional model. The model centralizes information, in an ... ver más
Revista: Applied Sciences

 
Baki Bagriaçik, Gökhan Altay, Suat Önal, Cafer Kayadelen     Pág. 215 - 227

 
Zhen Cui, Maochu Zhang and Qian Sheng    
Traditionally, the numerical simulation work of a bridge gravity anchorage structure is performed with a continuous method, such as the finite element method (FEM). However, since the rock mass and gravity anchorage structure are assumed to be continuous... ver más