ARTÍCULO
TITULO

Numerical Investigation on Hydrodynamic Characteristics of Immersed Buoyant Platform

Jinjiang Yao    
Xingwei Zhen    
Yi Huang and Wenhua Wang    

Resumen

The Next Generation Subsea Production System (NextGen SPS) is considered as a competitive alternative system used for offshore petroleum production in ultra-deep sea based on the artificial seabed technology. The Immersed Buoyant Platform (IBP), which is located at a constant depth below the free surface of the water to minimize wave loading, provides a buoyant stable platform for supporting the well completion equipment. Therefore, the hydrodynamic characteristics of IBP in the currents play an essential role in determining the global responses of NextGen SPS. In this paper, aiming at acquiring an optimum structural form of IBP, the hydrodynamic characteristics of the flow past the cylindrical IBP with different height-to-diameter ratios are systematically investigated by use of the large eddy simulation (LES) approach. The simulations with fifteen different height-to-diameter ratios (H/D" role="presentation" style="position: relative;">??/??H/D H / D ) are investigated. The Reynolds numbers are ranged from 0.94×106" role="presentation" style="position: relative;">0.94×1060.94×106 0.94 × 10 6 to 3.45×106" role="presentation" style="position: relative;">3.45×1063.45×106 3.45 × 10 6 . It can be verified that the separated fluid reattaches on the surface of the cylinder when the aspect ratio is between 0.1 and 0.4. Due to the specific shape ratio and obvious 3D effect of the cylindrical IBP, no significant vortex shedding has been clearly observed when the aspect ratio is between 0.1 and 0.4. In the case of 0.4≤H/D≤5.0" role="presentation" style="position: relative;">0.4=??/??=5.00.4=H/D=5.0 0.4 = H / D = 5.0 , a series of regular and alternating vortex street shedding appear behind the circular cylinder. The simulation results also show that the recirculation region length behind the cylindrical IBP can be significantly reduced with the decreasing aspect ratio. It can be concluded that the cylindrical IBP performs the best hydrodynamic characteristics when the aspect ratio is between 0.3 and 0.4. The research findings will be of great significance to providing valuable reference and foundation to determine the optimum form of underwater structures, such as the buoyancy cans of the hybrid riser system.

 Artículos similares

       
 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más