Inicio  /  Computation  /  Vol: 6 Par: 3 (2018)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of Film Cooling Enhancement Using an Upstream Sand-Dune-Shaped Ramp

Sheng-Chang Zhang    
Jing-Zhou Zhang and Xiao-Ming Tan    

Resumen

Film cooling enhancement by incorporating an upstream sand-dune-shaped ramp (SDSR) to the film hole exit was numerically investigated on a flat plate under typical blowing ratios ranging from 0.5 to 1.5. Three heights of SDSRs were designed: 0.25D, 0.5D, and 0.75D. The results indicated that the upstream SDSR effectively controlled the near-wall primary flow and subsequent mutual interaction with the coolant jet, which was the main mechanism of the film cooling enhancement. First, a pair of anti-kidney vortices was formed at the trailing ridges of the SDSR, which helped suppress the kidney vortex pair due to the interaction between the coolant jet and the primary flow. Second, a weak separation and a low pressure zone were induced behind the backside of the SDSR, which caused the coolant jet to spread around the film cooling hole and improve the lateral film coverage. With respect to the baseline cylindrical film cooling holes, the effect of the upstream SDSR was distinct under different blowing ratios. Under a low blowing ratio, the upstream SDSR shortened the streetwise film layer coverage in the vicinity of the film hole centerline but increased the span-wise film layer coverage. A relatively optimal ramp height seemed to be 0.5D. Under a high blowing ratio, both the streamwise and span-wise film layer coverages improved in comparison with the baseline case. The film cooling effectiveness improved gradually with increasing ramp height.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace