Inicio  /  Applied Sciences  /  Vol: 10 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Approach to Fast Power Allocation in SISO SWIPT Systems with a Power-Splitting Scheme

Huynh Thanh Thien    
Pham-Viet Tuan and Insoo Koo    

Resumen

Recently, simultaneous wireless information and power transfer (SWIPT) systems, which can supply efficiently throughput and energy, have emerged as a potential research area in fifth-generation (5G) system. In this paper, we study SWIPT with multi-user, single-input single-output (SISO) system. First, we solve the transmit power optimization problem, which provides the optimal strategy for getting minimum power while satisfying sufficient signal-to-noise ratio (SINR) and harvested energy requirements to ensure receiver circuits work in SWIPT systems where receivers are equipped with a power-splitting structure. Although optimization algorithms are able to achieve relatively high performance, they often entail a significant number of iterations, which raises many issues in computation costs and time for real-time applications. Therefore, we aim at providing a deep learning-based approach, which is a promising solution to address this challenging issue. Deep learning architectures used in this paper include a type of Deep Neural Network (DNN): the Feed-Forward Neural Network (FFNN) and three types of Recurrent Neural Network (RNN): the Layer Recurrent Network (LRN), the Nonlinear AutoRegressive network with eXogenous inputs (NARX), and Long Short-Term Memory (LSTM). Through simulations, we show that the deep learning approaches can approximate a complex optimization algorithm that optimizes transmit power in SWIPT systems with much less computation time.

 Artículos similares

       
 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
Yuhan Li, Shuguang Zhang, Ruichen He and Florian Holzapfel    
Urban Air Mobility (UAM) has emerged in response to increasing traffic demands. As UAM involves commercial flights in complex urban areas, well-established automation technologies are critical to ensure a safe, accessible, and reliable flight. However, t... ver más
Revista: Aerospace

 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences

 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information