ARTÍCULO
TITULO

Angular momentum tearing mechanism investigation through intermolecular at the bubble interface

Tri Tjahjono    
I. N. G. Wardana    
Mega Nur Sasongko    
Agung Sugeng Widodo    

Resumen

Two-phase flow with gas-liquid component is commonly applied in industries, specifically in the refinery process of liquid products. Oil products with bubbles contents are undesirable in a production process. This paper describes an investigation of a process mechanism regarding the bubble breakup of the two-phase injection into quiescent water. The analytical model was developed based on the force mechanism of water flow at the bubble interface. The inertia force of water flow continually pushes the bubble while the drag force resists it. The bubble gets shapes change that affects the hydrodynamic flow around the bubble. Vortices with high energy density impact and make the stress interface over its strength so that the interface gets tear. The experiment was carried out by observing in the middle part of the injected flow. It was found that the forming process of bubble breakup can be explained as the following steps:1) sweep model is a bubble pushed by the inertial force of water flow. The viscous force of water shears the surface of the bubble. The effect of both forces, the bubble changes its shape. Then trailing vortex starts to appear in near bubble tail. The second flow of water is in around of the bubble to strengthen the vortex energy density that causes fragments to detach from the parent bubble;2) stretching model, the apparent bubble has high momentum force infiltrated in stagnant water depth and bubble ends are stretched out by the inertial force of the bubble and viscous force of water. The bubble surface has experienced stretching and tearing become splitting away. Based on the finding, the breakup process is highly dependent on the momentum of water flow, which triggers the secondary flow as the initial process of vortex flow, and it causes the tear of the bubble surface due to angular momentum

 Artículos similares

       
 
Bingyu Xu, Shuquan Wang, Liping Zhao and Long Zhang    
Obtaining the inertia tensors of defunct space objects is essential in on-orbit missions. When the inertia tensor of the space object is non-diagonal, the problem becomes challenging. In this case, the system does not have enough information to estimate ... ver más
Revista: Aerospace

 
Liang Sun, Zewang Yang, Mingsheng Chen and Fen Li    
To investigate the overtopping and slamming phenomena that occur in the interactions between waves and oscillating surge wave energy converters (OSWECs), a two-dimensional numerical wave flume was established using computational fluid dynamics (CFD) soft... ver más

 
Xiaoji Li, Jiemei Huang and Leiming Sun    
With the advancement of underwater communication technology, the traditional modulation dimension has been introduced, developed and utilized. In addition, orbital angular momentum (OAM) is utilized as the modulation dimension for optical underwater comm... ver más

 
Andrea Colagrossi and Michèle Lavagna    
The capability to orient the solar arrays of a spacecraft toward the Sun is an ultimate asset for any attitude determination and control subsystem (ADCS). This ability should be maintained in any operative circumstance, either nominal or off-nominal, to ... ver más
Revista: Algorithms

 
Jaeuk Cho and Jong Hyeon Park    
With the feet of a biped robot attached insecurely to a terrain, its stability is strongly affected by the characteristics of the terrain on which it runs. Therefore, for stable bipedal running, online motion control based on the states of the robot and ... ver más
Revista: Applied Sciences