Inicio  /  Aerospace  /  Vol: 10 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Air Traffic Complexity Evaluation with Hierarchical Graph Representation Learning

Lu Zhang    
Hongyu Yang and Xiping Wu    

Resumen

Air traffic management (ATM) relies on the running condition of the air traffic control sector (ATCS), and assessing whether it is overloaded is crucial for efficiency and safety for the entire aviation industry. Previous approaches to evaluating air traffic complexity in a sector were mostly based on aircraft operational status and lacked comprehensiveness of characterization and were less adaptable in real situations. To settle these issues, a deep learning technique grounded on complex networks was proposed, employing the flight conflict network (FCN) to generate an air traffic situation graph (ATSG), with the air traffic control instruction (ATCOI) received by each aircraft included as an extra node attribute to increase the accuracy of the evaluation. A pooling method with a graph neural network (GNN) was used to analyze the graph-structured air traffic information and produce the sector complexity rank automatically. The model Hierarchical Graph Representing Learning (HGRL) was created to build comprehensive feature representations which involve two parts: graph structure coarsening and graph attribute learning. Structure coarsening reduced the feature map size by choosing an adaptive selection of nodes, while attribute coarsening selected key nodes in the graph-level representation. The experimental findings of a real dataset from the Chinese aviation industry reveal that our proposed model exceeds prior methods in its ability to extract critical information from an ATSG. Moreover, our work could be applied in the two main types of sectors and without extra factor calculations to determine the complexity of the airspace.

 Artículos similares

       
 
Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang and Ying Nan    
In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machin... ver más
Revista: Aerospace

 
Eri Itoh, Koji Tominaga, Michael Schultz and Vu N. Duong    
Free route airspace allows airspace users to freely plan a route in en-route airspaces within certain restrictions. It is anticipated to offer the benefit of fuel saving and operational flexibility. Regarding its efficient implementation into the ASEAN a... ver más
Revista: Aerospace

 
Zhuoming Du, Junfeng Zhang, Zhao Ma and Jiaxin Xu    
Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and ... ver más
Revista: Aerospace

 
Lin Xu, Shanxiu Ma, Zhiyuan Shen and Ying Nan    
The role of air traffic controllers is to direct and manage highly dynamic flights. Their work requires both efficiency and accuracy. Previous studies have shown that fatigue in air traffic controllers can impair their work ability and even threaten flig... ver más
Revista: Aerospace

 
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu    
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co... ver más
Revista: Aerospace