Inicio  /  Aerospace  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

The Experimental Investigation of a 98% Hydrogen Peroxide Monopropellant Thruster Comprising the Metal-Foam-Supported Manganese Oxide Catalyst

Pawel Surmacz and Zbigniew Gut    

Resumen

The article presents alternative metal-supported catalysts for decomposition of the highest-class hydrogen peroxide: 98%+ (Type 98 HP, according to MIL-PRF-16005F). The aim of this study was the experimental investigation of an alternative solution for decomposition of 98%+ hydrogen peroxide, strictly for chemical propulsion. High-porosity open cell metal foams have been identified as structures with great potential. Low density, good mechanical and thermal properties, availability of various materials and alloys as well as new technologies of manufacturing, make metal foam a potential solution for many different propellants, not only hydrogen peroxide. Open cell NiCrAl foam has been processed to prepare several catalysts, with different content and dispersion of the active phase. Cleaning and drying were performed to prepare carriers for further processing: wet impregnation, slow drying, and calcination. Simple drop tests with 98% hydrogen peroxide have been conducted to estimate activity level of catalysts, in a simplified scale: low, medium, high. Then, real-environment tests have been performed in a catalyst bed. Temperature, pressure along the bed and propellant mass flow rate were measured while testing. The analysis of the test results provided a general conclusion that metal foam supported manganese oxide catalyst is a promising solution for hydrogen peroxide propulsion.

 Artículos similares

       
 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Yusong Wang, Chengxiang Zhu, Ke Xiong and Chunling Zhu    
Ice accumulation on airfoils and engines seriously endangers fight safety. The design of anti-icing/de-icing systems calls for an accurate measurement of the adhesion strength between ice and substrates. In this research, a test bench for adhesion streng... ver más
Revista: Aerospace

 
Hai Du, Hao Jiang, Zhangyi Yang, Haoyang Xia, Shuo Chen and Jifei Wu    
The characteristic of delayed airfoil stalls caused by the bio-inspired Wavy Leading-Edges (WLEs) has attracted extensive attention. This paper investigated the effect of WLEs on the aerodynamic performance and flow topologies of the airfoil through wind... ver más
Revista: Aerospace

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más