Inicio  /  Aerospace  /  Vol: 9 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation

Pengcheng Cui    
Hongyin Jia    
Jiangtao Chen    
Guiyu Zhou    
Xiaojun Wu    
Mingsheng Ma    
Huan Li and Jing Tang    

Resumen

Hypersonic vehicles are drawing more and more attention now and for the near future, especially in the low-altitudes near space, from 20 km to 45 km. The reliable separation of the protecting shroud from the hypersonic vehicle is a prerequisite and critical issue for the success of the entire flight mission. The unsteady multi-body separation characteristics and flow characteristics of hypersonic shroud separation at Mach 7.0 are investigated based on numerical simulation in this paper. The improved delayed detached eddy simulation (IDDES) method, dynamic hybrid overset mesh method, and HLLE++ numerical scheme are used to ensure numerical accuracy. Numerical results show that there are four types of vortexes and three types of shock waves inside the shrouds during the separation process, which generate complex shock wave/vortex/boundary layer interactions. Further, an unsteady process of the expansion-transfer-dissipation of an A-type vortex is found, which is the result of strong shock/vortex/boundary layer interactions. The adverse pressure gradient is the root cause driving the generation and transfer of the A-type vortex during the shroud separation. Furthermore, the transfer process of the A-type vortex only lasts for 5.52 ms but causes a large disturbance to the aerodynamic force of the shroud. The results of this paper could provide a reference for the design of near-space hypersonic vehicles.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace

 
Ge Wang, Chengke Li, Weiqiang Pu, Bocheng Zhou, Haiwei Yang and Zenan Yang    
A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?str... ver más
Revista: Aerospace