Inicio  /  Applied Sciences  /  Vol: 8 Núm: 3 Par: March (2018)  /  Artículo
ARTÍCULO
TITULO

Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

Mustafa E. Amiryar    
Keith R. Pullen and Daniel Nankoo    

Resumen

Energy storage systems (ESS) are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS) are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG) and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM) and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of load fluctuations.

 Artículos similares

       
 
Jens Engström, Zahra Shahroozi, Eirini Katsidoniotaki, Charitini Stavropoulou, Pär Johannesson and Malin Göteman    
Wave energy conversion is a renewable energy technology with a promising potential. Although it has been developed for more than 200 years, the technology is still far from mature. The survivability in extreme weather conditions is a key parameter haltin... ver más

 
Spyridon Kilimtzidis and Vassilis Kostopoulos    
The race towards cleaner and more efficient commercial aviation demands novel designs featuring improved aerodynamic and structural characteristics, the main pillars that drive aircraft efficiency. Among the many proposed and introduced, the increase in ... ver más
Revista: Aerospace

 
Weixing Yuan, Alanna Wall, Eric Thornhill, Chris Sideroff, Mahmoud Mamou and Richard Lee    
In support of Canadian industrial and defence ship design and offshore helicopter operations, a series of Ship?Helicopter Operational Limits Analysis and Simulation (SHOLAS) projects are being conducted at the National Research Council Canada (NRC) in co... ver más

 
Yannis Werner, Tim van Hout, Vijey Subramani Raja Gopalan and Thomas Vietor    
Nowadays, product development times are constantly decreasing, while the requirements for the products themselves increased significantly in the last decade. Hence, manufacturers use Computer-Aided Design (CAD) and Finite-Element (FE) Methods to develop ... ver más
Revista: Algorithms

 
Kalyani Bhide and Shaaban Abdallah    
Turbulence is governed by various mechanisms, such as production, dissipation, diffusion, dilatation and convection, which lead to its evolution and decay. In high-speed flows, turbulence becomes complicated due to compressibility effects. Therefore, the... ver más
Revista: Aerospace