Inicio  /  Energies  /  Vol: 11 Núm: 3 Par: March (2018)  /  Artículo
ARTÍCULO
TITULO

Experimental and Numerical Analyses of the Sloshing in a Fuel Tank

Emma Frosina    
Adolfo Senatore    
Assunta Andreozzi    
Francesco Fortunato and Pino Giliberti    

Resumen

The sloshing of fuel inside the tank is an important issue in aerospace and automotive applications. This phenomenon, in fact, can cause various issues related to vehicle stability and safety, to component fatigue, audible noise, vibrations and to the level measurement of the fuel itself. The sloshing phenomenon can be defined as a highly nonlinear oscillatory movement of the free-surface of liquid inside a container, such as a fuel tank, under the effect of continuous or instantaneous forces. This paper is the result of a research collaboration between the Industrial Engineering Department of the University of Naples ?Federico II? and the R&D department of Fiat Chrysler Automobiles (F.C.A.) The activity is focused on the study of the sloshing in the fuel tank of vehicles. The goal is the optimization of the tank geometry in order to allow, for example, the correct fuel suction under all driving conditions and to prevent undesired noise and vibrations. This paper shows results obtained on a reference tank filled by water tinted with a dark blue food colorant. The geometry has been tested on a test bench designed by Moog Inc. on specification from Fiat Chrysler Automobiles with harmonic excitation of a 2D tank slice along one degree of freedom. The test bench consists of a hexapod with six independent actuators connecting the base to the top platform, allowing all six Degrees of Freedom (DOFs). On the top platform there are other two additional actuators to extend pitch and roll envelope, thus the name of ?8-DOF bench?. The designed tank has been studied with a three-dimensional Computational Fluid Dynamics (CFD) modeling approach, too. By the end, the numerical and experimental data have been compared with a post-processing analysis by means of Matlab® software. For this reason, the images have been reduced in two dimensions. In particular, the percentage gaps of the free surfaces and the center of gravity have been compared each other. The comparison, for the three different levels of liquid tested, has shown a good agreement with a discrepancy always less than 3%.

 Artículos similares

       
 
Jing Liu, Tao Zhang, Zhicheng Pan and Fanjun Ma    
Concrete-filled round-ended steel tubes (CFRTs) are a unique type of composite stub columns, which have the advantage of aesthetics and a well-distributed major?minor axis. Thus, the structure has been widely employed as piers and columns in bridges. To ... ver más
Revista: Buildings

 
Estefanía Gómez-Gamboa, Jorge Guillermo Díaz-Rodríguez, Jairo Andrés Mantilla-Villalobos, Oscar Rodolfo Bohórquez-Becerra and Manuel del Jesús Martínez    
Revista: Infrastructures

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water

 
Oscar Bermejo, Juan Manuel Gallardo, Adrian Sotillo, Arnau Altuna, Roberto Alonso and Andoni Puente    
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon dep... ver más

 
Christian Lehr, Pascal Munsch, Romuald Skoda and Andreas Brümmer    
The acoustic properties of a single-stage centrifugal pump with low specific speed are investigated by means of compressible 3D CFD simulations (URANS) and experiments. In order to determine the pump?s acoustic transmission and excitation characteristics... ver más