Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Modelling Hydrological Performance of a Bauxite Residue Profile for Deposition Management of a Storage Facility

Mandana Shaygan    
Brent Usher and Thomas Baumgartl    

Resumen

Accurate scheduling of bauxite residue (red mud) deposition time is required in order to prevent the risk of storage facility failure. This study was conducted to precisely determine the hydraulic parameters of bauxite residue and investigate the capability of HYDRUS to accurately estimate the residue moisture profile and the timing for its deposition. The hydraulic properties of the bauxite residue profile were determined by solving an inverse problem. A one-dimensional hydrological model (HYDRUS-1D) was validated using a 300 mm long column filled with bauxite residue and exposed to a dynamic lower boundary condition. After numerical validation, the model was used to simulate the moisture profile of bauxite residue under the climatic conditions of an alumina refinery site in Queensland, Australia, as well as other scenarios (i.e., high (300 mm) and small (1.7 mm) rainfall events of the site). This study showed that the HYDRUS model can be used as a predictive tool to precisely estimate the moisture profile of the bauxite residue and that the timing for the re-deposition of the bauxite residue can be estimated by understanding the moisture profile and desired shear strength of the residue. This study revealed that the examined bauxite residue approaches field capacity (water potential -10 kPa) after three days from a low rainfall event (<1.7 mm) and after eight days from an intense rainfall event (300 mm) at the time of disposal. This suggests that the bauxite residue can be deposited every four days after low rainfall events (as low as 1.7 mm) and every nine days after high rainfall events (as high as 300 mm) at the time of deposition, if bauxite residue experiences an initial drying period following deposition.

 Artículos similares

       
 
Cagri Alperen Inan, Ammar Maoui, Yann Lucas and Joëlle Duplay    
Water resource management scenarios have become more crucial for arid to semi-arid regions. Their application prerequisites rigorous hydrological modelling approaches since data are usually exposed to uncertainties and inaccuracies. In this work, Soil Wa... ver más
Revista: Water

 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Antoine Picard, Florent Barbecot, Gérard Bardoux, Pierre Agrinier, Marina Gillon, José A. Corcho Alvarado, Vincent Schneider, Jean-François Hélie and Frédérick de Oliveira    
Accurate discharge measurement is mandatory for any hydrological study. While the ?velocity? measurement method is adapted to laminar flows, the ?dilution? method is more appropriate for turbulent streams. As most low-gradient streams worldwide are neith... ver más
Revista: Hydrology

 
Evangelos Rozos    
Machine learning has been used in hydrological applications for decades, and recently, it was proven to be more efficient than sophisticated physically based modelling techniques. In addition, it has been used in hybrid frameworks that combine hydrologic... ver más
Revista: Hydrology

 
Xiaohua Xiang, Zhijun Pan, Xiaoling Wu and Hong Yang    
Coupling hydrological modelling systems (HMS) with a geographic information system (GIS) can significantly enhance hydrological research and expand its applications. The calculation for HMS requires geographic information data; however, the current GIS d... ver más