Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Water  /  Vol: 7 Par: 6 (2015)  /  Artículo
ARTÍCULO
TITULO

Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model

Patrick Keilholz    
Markus Disse and Ümüt Halik    

Resumen

The Tarim basin is a unique ecosystem. The water from the Tarim River supports both wildlife and humans. To analyze the effects of both land use and climate changes on groundwater, a research site was established at Yingibazar, which is a river oasis along the middle section of the Tarim River. A hydrological survey was performed to assess the general water cycle in this area with special emphasis on groundwater replenishment as well as the impact of agricultural irrigation on the riparian natural vegetation with respect to salt transport and depth of groundwater. Although high-resolution input data is scarce for this region, simulation of water cycle processes was performed using the hydrological model MIKE SHE (DHI). The results of the calibrated model show that natural flooding is the major contributor to groundwater recharge. There is also a close interaction between irrigated agricultural areas and the adjacent natural vegetation for groundwater levels and salinity up to 300 m away from the fields. Furthermore, the source of water used for irrigation (i.e., river and/or groundwater) has a high impact on groundwater levels and salt transportation efficiency. The ongoing expansion of agricultural areas is rapidly destroying natural vegetation, floodplains, and their natural flow paths. Our results show that more unstable annual Tarim floods will occur in the future under the background of climate change. Therefore, integrated hydrological simulations were also performed for 2050 and 2100 using MIKE SHE. The results confirm that after the glaciers melt in the Tian Shan Mountains, serious aquifer depletion and environmental degradation will occur in the area, causing great difficulties for the local people.

 Artículos similares

       
 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Dimitrios Kalfas, Stavros Kalogiannidis, Olympia Papaevangelou and Fotios Chatzitheodoridis    
The complex interplay between land use planning, water resource management, and the effects of global climate change continues to attract global attention. This study assessed the connection between land use planning, water resources, and global climate ... ver más
Revista: Water

 
Gholamreza Eslamifar, Hamid Balali and Alexander Fernald    
Enhancing the comprehension of alterations in land use holds paramount importance for water management in semi-arid regions due to its effects on hydrology and agricultural economics. Allowing agricultural land to lie fallow has emerged as a technique to... ver más
Revista: Water

 
Shees Ur Rehman, Afzal Ahmed, Gordon Gilja, Manousos Valyrakis, Abdul Razzaq Ghumman, Ghufran Ahmed Pasha and Rashid Farooq    
Nature-based solutions (NBSs) always provide optimal opportunities for researchers and policymakers to develop sustainable and long-term solutions for mitigating the impacts of flooding. Computing the hydrological process in hilly areas is complex compar... ver más
Revista: Water