Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 6 Par: 4 (2014)  /  Artículo
ARTÍCULO
TITULO

The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

Xinqiang Du    
Yunqing Fang    
Zijia Wang    
Jiawei Hou and Xueyan Ye    

Resumen

The implementation and development of managed aquifer recharge (MAR) have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp) and median grain size of suspended solids (d50) was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp) and different level of grain diameter of suspended solids (di), were developed to predict the potential suspended solids types.

 Artículos similares

       
 
Jianan Yin, Mingwei Zhang, Yuanyuan Ma, Wei Wu, He Li and Ping Chen    
Airport arrival and departure movements are characterized by high dynamism, stochasticity, and uncertainty. Therefore, it is of paramount importance to predict and analyze surface taxi time accurately and scientifically. This paper conducts a comprehensi... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Haibo Chu, Zhuoqi Wang and Chong Nie    
Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and ... ver más
Revista: Water

 
José Miguel Rodrigues    
The timely and precise prediction of flooding progression and its eventual outcome in ships with breached hulls can lead to dramatic improvements in maritime safety through improved guidance for both emergency response and ship design. The traditional ap... ver más