Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Research on Trajectory Tracking Control of Underwater Vehicle Manipulator System Based on Model-Free Adaptive Control Method

Gang Xue    
Yanjun Liu    
Zhenjie Shi    
Lei Guo and Zhitong Li    

Resumen

In order to improve the trajectory tracking accuracy of an Underwater Vehicle Manipulator System (UVMS) under uncertain disturbance conditions of ocean current, a Model-free Adaptive Control (MFAC) method was used. Combined with Radial Basis Function Neural Networks (RBFNN), the RBFNN-MFAC method is proposed to improve the performance of the controller. A hydrodynamic model of UVMS was defined in the commercial software, Fluent, to calculate hydrodynamics disturbance, and the mechanism of the dynamic model of UVMS was defined in the commercial software, Adams, to simulate the motion of UVMS. The trajectory tracking performance with various control schemes, including PID (Proportional Integral Derivative), MFAC and RBFNN-MFAC, were analyzed with the Adams and Simulink joint simulation model. The results show that the position tracking accuracy and the speed tracking accuracy with the MFAC control scheme were 68.1% and 81.0% better, respectively, than those with PID control scheme. The position tracking accuracy and the speed tracking accuracy with the RBFNN-MFAC control scheme were 66.3% and 43.1% better, respectively, than those with the MFAC control scheme. The MFAC control scheme and the RBFNN-MFAC control scheme proposed in this paper exhibit good trajectory tracking performance without the precise dynamic model of UVMS, which is of great importance to applications in engineering.

 Artículos similares

       
 
Péter Bauer and Mihály Nagy    
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in... ver más
Revista: Aerospace

 
Lucas Schmidt Goecks, Anderson Felipe Habekost, Antonio Maria Coruzzolo and Miguel Afonso Sellitto    
Digital transformations in manufacturing systems confer advantages for enhancing competitiveness and ensuring the survival of companies by reducing operating costs, improving quality, and fostering innovation, falling within the overarching umbrella of I... ver más

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Michal Welcer, Nezar Sahbon and Albert Zajdel    
Modern aviation technology development heavily relies on computer simulations. SIL (Software-In-The-Loop) simulations are essential for evaluating autopilots and control algorithms for multi-rotors, including drones and other UAVs (Unmanned Aerial Vehicl... ver más
Revista: Aerospace

 
Chunyu Song, Teer Guo, Jianghua Sui and Xianku Zhang    
In order to solve the problem of the dynamic positioning control of large ships in rough sea and to meet the need for fixed-point operations, this paper proposes a dynamic positioning controller that can effectively achieve large ships? fixed-point contr... ver más