Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

Curved-Line Path-Following Control of Fixed-Wing Unmanned Aerial Vehicles Using a Robust Disturbance-Estimator-Based Predictive Control Approach

Weiwei Qi    
Mingbo Tong    
Qi Wang    
Wei Song and Hunan Ying    

Resumen

In this research, the design of a robust curved-line path-following control system for fixed-wing unmanned aerial vehicles (FWUAVs) affected by uncertainties on the latitude plane is studied. This is undertaken to enhance closed-loop system robustness under unknown uncertainties and derive the control surface deflection angle directly used to control FWUAVs, which has rarely been studied in previous works. The system is formed through the mass center position control (MCPC) and yaw angle control (YAC) subsystems. In the MCPC, the desired yaw angle, which is treated as the reference signal for the YAC subsystem, is calculated analytically using path-following errors, current flow angles, and the yaw angle. In the YAC, a disturbance estimator is designed to estimate uncertainties such as nonlinearities, couplings, time variations, model parameter perturbations, and unmodeled dynamics. Predictive functional controllers are designed to target nominal systems in the absence of uncertainties, such that the estimations of the uncertainties can be incorporated through feedback for closed-loop system robustness enhancement. The simulation results show that higher path-following precision and stronger robustness for the FWUAVs based on the proposed approach can be achieved using only rough model parameters compared with the conventional nonlinear dynamic inversion, which requires detailed model information.

 Artículos similares

       
 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Woo-Hyun Choi and Jongwon Kim    
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati... ver más

 
Ornella Tortorici, Charly Péraud, Cédric Anthierens and Vincent Hugel    
Underwater remotely operated vehicles (ROVs) are linked to the surface through a tether that is usually controlled by a human operator. The length of the tether being deployed in the water in real time is a critical determinant of the success of the miss... ver más

 
Sheng Liu, Jian Song, Lanyong Zhang and Yinchao Tan    
The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target c... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más